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ABSTRACT
Nonlinear rods are functionally important components in many flexible multibody
systems. In this contribution, the influence of the effective stiffness parameters [EA]
and [GA] of a Cosserat rod that affect the extension of the centerline as well as trans-
verse shearing of cross sections is investigated in equilibrium configurations, also in
comparison with the extensional strains of an extensible Kirchhoff rod. Besides rough
order of magnitude estimates, quantitatively accurate bounds of the respective strains
are derived theoretically and validated in numerical simulations.
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1 Introduction
Geometrically exact rod models [1] occur in three different variants w.r.t. the kinematical prop-
erties of their configuration variables (see Fig. 1): (i) inextensible Kirchhoff rods, (ii) extensible
Kirchhoff rods, and (iii) Cosserat rods. We refer to [3] for technical details on the kinematics and
differential geometry of geometrically exact rods.

Figure 1. Centerline r(s) and moving frame R(s) = a(k)(s)⊗ ek of a Cosserat rod (see [3]).

We are interested in industrial applications where large spatial deformations of cables have to be
simulated interactively [4]. Typical boundary conditions lead to deformed configurations show-
ing a considerable amount of bending of the centerline, accompanied by a moderate amount of
approximately uniform twisting of the cross sections along the configuration. In such cases, con-
figurations computed by either of the three model variants turn out to be practically the same, as
illustrated by Fig. 2:



Figure 2. Analytical centerline curves of an inextensible Kirchhoff rod (solid lines) in plane
bending (left: cantilever type, middle: both ends clamped) and helical (right) configurations.
The red dots show the vertex positions computed with a discrete Cosserat rod model by min-
imization of the elastic energy (see [5] for details).

Bending and twisting are affected by the related effective stiffness parameters [EI] and [GJ], re-
spectively. For composite cables, one needs to treat these stiffness parameters as independent
quantities. Often the mass per length ρL of a cable is sufficiently low, such that the influence of
gravity can be considered as weak, and the shape of deformed configurations in static equilib-
rium mainly depends on the ratio [GJ]/[EI]. Therefore it is important to measure these stiffness
parameters properly [4, 6].

While for homogeneous elastic specimens the measurement of extensional stiffness [EA] is an ele-
mentary experimental task, obtaining reproducible results from measurements of composite cables
turns out to be far more difficult [6], and a measurement of the shear stiffness [GA] is practically
impossible. Therefore it is important to understand the influence of the effective stiffness param-
eters [EA] and [GA] on the rod configurations in equilibrium both qualitatively and quantitatively.
Apart from the overall shape, estimates of the extensional strain εt(s) := ‖r′(s)‖− 1 and shear
angle ϑs(s) := arccos(〈a(3)(s), t(s)〉) are of interest, where t(s) := r′(s)/‖r′(s)‖ is the unit tangent
vector of the centerline.

In our contribution, we investigate the influence of the effective stiffness parameters [EA] and
[GA] of a Cosserat rod model that govern extension (or compression) of the centerline as well
as transverse shearing of the cross sections on its equilibrium configurations in such cases. Our
results open up the possibility to set the stiffness parameters [EA] and [GA] to proper values by
modeling rather than measurements.

2 Modelling details, methodical approach and theoretical a priori estimates
The sketch in Fig. 1 shows the centerline r(s) and moving frame R(s) = a(k)(s)⊗ek of the config-
uration of a Cosserat rod. We refer to [3] for further technical details and mathematical notation.

The material tangent and curvature vectors ΓΓΓ(s) := RT (s) ·r′(s) and K(s) := RT (s) ·κκκ(s) are strain
measures that characterize the configuration geometry up to rigid body motions. They contain the
components of the tangent vector r′(s) and the Darboux vector κκκ(s) = 1

2 a(k)(s)×a(k)′(s) w.r.t. the
local frame. The curve parameter s∈ [0,L] measures the arc length of the centerline in its reference
configuration of length L, and derivatives w.r.t. s are denoted by a prime, e.g. r′(s) = ∂sr(s).
The moving frame R(s) is adapted to the centerline r(s) if Γ(1,2)(s) = 〈a(1,2)(s),r′(s)〉 ≡ 0 for
all s ∈ [0,L], and Γ(3)(s) = ‖r′(s)‖. For the Kirchhoff model variants (i) and (ii) one postulates
that the moving frames R(s) remain adapted to the centerline also in deformed configurations,
such that transverse shearing of the cross sections is inhibited. Variant (i) additionally postulates
an inextensible centerline by requiring that ‖r′(s)‖ = 1 holds for all deformed configurations.
Differently, for variant (iii) neither adapted frames nor an inextensible centerline are assumed.



2.1 Scaling of the elastic energy terms and rough strain estimates
Assuming for simplicity zero gravity, equilibrium configurations of a straight inextensible Kirch-
hoff rod are local minima of its elastic bending and torsional energy, which in the case of transver-
sally isotropic bending stiffness [EI], torsional stiffness [GJ] and cross sections with coinciding
shear and area centers is given by Wbt =

1
2
∫ L

0 ds [EI]κ2 +[GJ]τ2, where κ(s) is the Frenet curva-
ture of the inextensible centerline, and τ(s) is the twist of the adapted frame.

For extensible Kirchhoff rods, the total elastic energy consists of the sum Wel = Wbt +Wext with
the extensional energy Wext =

1
2
∫ L

0 ds [EA]ε2
t . For Cosserat rods, the latter is replaced by the

more complex energy term Wes =
1
2
∫ L

0 ds [EA]Γ2
t + [GA]Γ2

s measuring the elastic energy stored
in extension and transverse shearing, where the strains Γs :=

√
Γ(1)2 +Γ(2)2 = (1+εt)sin(|ϑs|)≈

|ϑs| and Γt :=Γ(3)−1=(1+εt)cos(ϑs)−1≈ εt depend on both deformation modes in a combined
manner. The twist of a Cosserat rod is measured by the curvature component Kt(s)≡ K(3)(s), and
its total bending curvature by Kb(s) :=

√
K(1)2 +K(2)2 = ‖a(3)′(s)‖. These curvature quantities

generalize the corresponding quantities τ(s) and κ(s) = ‖t′(s)‖ of the Kirchhoff model, such that
the elastic bending and torsional energy is given by Wbt =

1
2
∫ L

0 ds [EI]K2
b +[GJ]K2

t .

Static equilibrium configurations of an elastic rod can be obtained as stable minima of its elas-
tic energy (or more general: its potential energy including gravity, if the latter is present) subject
to given boundary conditions. As a first step in our theoretical analysis of the impact of exten-
sional and transverse shear stiffness on equilibrium configurations, we scale the various physical
quantities that describe the model to characteristic values.

2.1.1 Characteristic scaling of the elastic energy terms
A rod of length L bent into a half circle has constant curvature κ = π/L. This indicates that a
curvature value of size κL := 1/L is rather moderate (for the half circle κ/κL = π ≈ 3). On the
other hand, for a circular cross section of radius r a local curvature of size 1/r or larger would
geometrically imply self intersection. Even for a bit smaller curvature values in this range local
strains become large, with substantial warping of the local cross sections, such that the rod model
ceases to be a valid. Therefore κ ' 1/r corresponds to the range of extreme curvature values,
while κ ' 1/L can be considered as the typical range of curvature values for moderate spatial
deformations of slender rods. Below we outline how the introduction of L as the characteristic unit
to measure length induces κL = 1/L as characteristic unit for curvature:

We introduce the dimensionless curve parameter s̄ := s/L ∈ [0,1] for s ∈ [0,L], the dimension-
less centerline position vectors r̄(s̄) := r(s)|s=Ls̄/L and the respective frame directors ā( j)(s̄) :=
a( j)(s)|s=Ls̄, which are unit vectors and therefore already dimensionless quantities, all as functions
of s̄. First we note that r′(s) = ∂sr(s) = L(ds̄/ds)∂s̄r̄(s̄) = ∂s̄r̄(s̄) holds, as (ds̄/ds) = 1/L. As
the tangent vectors of the two parametrisations s 7→ r(s) and s̄ 7→ r̄(s̄) are identical at s = Ls̄, the
same is also the case for the strain measures Γ( j)(s) = 〈r′(s),a( j)(s)〉 ≡ 〈∂s̄r(s̄), ā( j)(s̄)〉=: Γ̄( j)(s̄)
at s = Ls̄. Differently, the reparametrisation s 7→ s̄ affects the curvatures by rescaling them to the
value κL = 1/L, as the Darboux vector κκκ(s) and its scaled counterpart κ̄κκ(s̄) = 1

2 ā(k)(s̄)×∂s̄ā(k)(s̄)
are related by the identity κ̄κκ(s̄) = Lκκκ(s) = κκκ(s)/κL at s = Ls̄, and the scaled material curvature
components are given by K̄( j)(s̄) = 〈κ̄κκ(s̄), ā( j)(s̄)〉 = L〈κκκ(s),a( j)(s)〉 = K( j)(s)/κL. The scaled
total bending curvature results as K̄b(s) = Kb(s)/κL, and the scaled curvature quantities of the
Kirchhoff model are obtained analogously as κ̄ = κ/κL and τ̄ = τ/κL.

Using the scaled dimensionless quantities introduced above, the elastic energy terms likewise can
be scaled to dimensionless form: W̄bt = Wbt/W 0

bt and W̄es = Wes/W 0
es, with characteristic energy

values W 0
bt := [EI]Lκ2

L = [EI]/L and W 0
es := [EA]L, where we have assumed for simplicity that

the effective stiffness parameters remain constant along the rod. The dimensionless energy terms
are defined as W̄bt := 1

2
∫ 1

0 ds̄ K̄b(s̄)2 + ρbtK̄t(s̄)2 and W̄es := 1
2
∫ 1

0 ds̄ Γ̄t(s̄)2 + ρesΓ̄s(s̄)2, with the
dimensionless ratios ρbt := [GJ]/[EI] and ρes := [GA]/[EA] of the effective stiffness parameters.



For the special case of a prismatic rod with circular cross section made of homogeneous, isotropic
material the values of these ratios are ρbt = 1/(1+ ν) = 2ρes with physical Poisson ratio values
0≤ ν ≤ 1

2 , which implies 2
3 ≤ ρbt ≤ 1 and 1

3 ≤ ρes≤ 1
2 . For composite objects like cables, measured

values of [EI] and [GJ] are found to be similar (i.e. ρbt ≈ 1) in some cases, but one also finds cases
where the structural properties of the cable components and their mechanical interaction lead to
values ρbt ' 10, i.e. a substantially increased effective torsional stiffness compared to bending.
Therefore in practise we need to consider a wider range of values of ρbt beyond ρbt ≈ 1. As the
shear stiffness [GA] is practically not measurable, and measurements of the extensional stiffness
[EA] for composite cables are hampered by systematic difficulties caused by imperfect clamping,
it is hard to make analogously reasonable statements about values of ρes observed in practise.

2.1.2 Rough estimates of the elastic energy terms and strains in equilibrium
If we consider spatial equilibrium states of an elastic rod like those shown in Fig. 2, the typical
order of magnitude of the observed bending curvatures ranges from very small values in approx-
imately straight sections up to largest values Kb,κ ' κL. The value of the twist of an elastic rod
with isotropic bending stiffness in equilibrium is constant along the rod and depends on the bound-
ary conditions: If none or only one of the ends of the rod is fully clamped, any equilibrium state
of the rod is untwisted (see [2] Ch. II §19), otherwise typically values Kt ,τ ' κL occur.

Therefore we expect that roughly W̄bt ∼ O(1) holds in the cases of our interest. For bound-
ary value problems leading to deformed configurations dominated by bending and torsion, one
needs to find local minima of the scaled elastic energy W̄el = Wel/W 0

bt = W̄bt + W̄es/λ 2
0 , where

λ 2
0 := [EI]/([EA]L2) = W 0

bt/W 0
es is a small dimensionless parameter that can be estimated as

λ0 'O(rIA/L)� 1 for the effective cross section radius rIA := 2
√

I/A, as discussed below:

For slender prismatic elastic rods with a circular cross section of radius r made of homogeneous
isotropic material λ0 =

1
2 r/L� 1. More generally, one may extract the geometric dependencies

of the effective stiffness values by defining effective elastic moduli [E]b := [EI]/I and [E]e :=
[EA]/A with ratio ρE := [E]b/[E]e, which takes the value ρE = 1 in the special homogeneous and
isotropic case, and rewrite the definition of λ0 in terms of these quantities as λ 2

0 = 1
4 ρE(rIA/L)2. As

experiments show, composite cables react substantially stiffer in extension compared to bending,
such that ρE < 1, and 1

2 rIA/L is an upper bound for λ0.

On this basis, one may treat the energy minimization problem by Berdichevsky’s method of vari-
ational asymptotic analysis [8, 9] to find approximate solutions for the Cosserat rod model, which
to leading order coincide with those of the inextensible Kirchhoff model1. After the preparatory
step to scale the elastic energy to its dimensionless form given by W̄el = Wel/W 0

bt = W̄bt + W̄es/λ 2
0

(see above), one would first search for rod configurations that minimize the leading term of order
λ
−2
0 , which results in W̄es→ 0 by enforcing the Kirchhoff constraints (consistent with the bound-

ary conditions), then subsequently minimize the term of order λ 0
0 = 1, i.e. the scaled energy W̄bt ,

subject to the chosen boundary conditions, which yields the curvature κ(s) and twist τ(s) of the
inextensible Kirchhoff solution. One recognizes by inspection (via counting powers of λ0) that
nonzero values of the extensional and shear strains can appear only in the next order of the asymp-
totic analysis, which besides εt ,ϑs ∼ O(λ 2

0 ) also yields approximate curvature and twist values
of the Cosserat model as those of the inextensible Kirchhoff model with additive corrections of
order O(λ 2

0 ), i.e. |Kb(s)−κ(s)|/κL, |Kt(s)−τ(s)|/κL =O(λ 2
0 ). For the relative size of the elastic

energy terms in equilibrium one finds the estimate Wes ' λ 2
0 Wbt .

Although a detailed exposition of the analytical computations sketched above is beyond the scope
of this conference paper, we provide at least rough order of magnitude estimates εt ,ϑs ∼ O(λ 2

0 )
for equilibrium values of both the extensional strains and shear angles by arguments brought for-

1We refer to [9] Vol. II, Part III, Ch. 15 for an application of this method to elastic beams, and Ex. 7 (p. 254-256)
in section 5.11 of Vol. I, Part I, Ch. 5 for an elementary demonstration of the approach on the example of the bending
energy terms of the linear Euler-Bernoulli and Timoshenko models.



ward by Audoly and Pomeau (see section 3.7 of [7]): Their basic working hypothesis is that for an
elastic rod deformed by an external force F , the order of magnitude of the bending moment Mb that
balances the external force F is M ' LF . Simple examples where this rough quantitative estimate
holds are the moment acting at the clamped end of a cantilever beam, or a straight rod bent into
the form of a helix of not too small radius and moderate pitch angle (see e.g. Fig. 2). The bending
moment in a section of local curvature κ ' κL = 1/L is Mb ' [EI]/L, which leads to the estimate
F ' [EI]/L2. In sections where the force locally acts approximately orthogonal to the cross sec-
tions, i.e. as a tension (or compressive) force Ft = [EA]εt , one obtains εt ' [EI]/([EA]L2) = λ 2

0 .
If the force locally acts parallel to the cross sections as a shear force Fs = [GA]ϑs, one obtains the
analogous estimate ϑs ' λ 2

0 with the assumption [GA]/[EA] ' 1. Evaluating the bending energy
with curvatures κ ≈ 1/L yields Wbt ≈ 1

2 [EI]/L. Inserting the estimates εt ,ϑs ≈ λ 2
0 into the elastic

energy term for extension and shearing (with [GA] ≈ [EA]) results in Wes ≈ 1
2 [EA]Lλ 4

0 ≈ λ 2
0 Wbt .

These rough estimates match the ones above resulting from variational asymptotic analysis.

2.2 Improved strain estimates obtained from the balance equations
In this section we further elaborate on the approach of Audoly and Pomeau [7]. We improve the
rough estimates for extensional and shear strains of a Cosserat rod in equilibrium by considering
the first integral m+ r× f of the equilibrium equations f′ = 0, m′+ r′× f = 0, which hold for all
rod model variants independent of kinematical constraints.

First we observe that for constant f the total moment m(s)+r(s)× f, which is likewise constant in
equilibrium, provides the desired relation between the sectional moment m(s)=mb(s)+mt(s) and
the "force times length" term r(s)× f, which can be rewritten as r(s)× f = FL r̄(s)× f̂ with r̄(s) :=
r(s)/L, F = ‖f‖ and f̂ := f/F . Note that even while f is constant along the rod, its orthogonal
decomposition into the tension and shear force components ft(s) = 〈a(3)(s), f〉a(3)(s) and fs(s) =
a(3)(s)× (f×a(3)(s)) = f− ft(s) acting parallel and orthogonal to the cross section normal a(3)(s)
vary along the rod in its equilibrium configuration.

From m(s)+ r(s)× f = const. we deduce that for any pair of positions r(s1,2) on the centerline of
an equilibrium configuration the identity

m(s2)−m(s1) = f× (r(s2)− r(s1)) (1)

holds for arbitrary s1,2 ∈ [0,L]. This will be the starting point of our derivation of improved quan-
titative estimates for the extensional and shear strains in equilibrium.

We pick a position r0 := r(s0) on the centerline at some fixed s0 ∈ [0,L] (to be determined later)
where the moment takes the value m0 := m(s0). From the identity (1) we can deduce the equalities

‖m(s)−m0‖ = ‖f× (r(s)− r0)‖ = F ‖f̂×∆r(s)‖ , (2)

with direction f̂ and modulus F of the constant force f already introduced above, and the secant
vector ∆r(s) := r(s)− r0 between positions on the centerline.

For the inextensible Kirchhoff model the components Fj(s) := 〈f,a( j)(s)〉 of the constant sec-
tional force f w.r.t. the local frame act as Lagrange multipliers paired with the algebraic con-
straints Γ(1,2) = 0 and Γt = 0 enforcing vanishing extensional and shear strains. For the exten-
sible Kirchhoff model the tension force component is ft(s) = [EA]εt(s)t(s), such that the con-
stant modulus of the sectional force is given by F =

√
([EA]εt(s))2 + fs(s)2, with the modulus

fs(s)= ‖fs(s)‖ of the shear force obtained from the vector Lagrange multiplier fs(s)=Fα(s)a(α)(s)
related to the constraints Γ(1,2)(s) = 0. For the Cosserat model the shear force is obtained from
the constitutive relation fs(s) = [GA]Γ(α)(s)a(α)(s) with modulus fs(s) = [GA]Γs(s) , and F =√
([EA]Γt(s))2 +([GA]Γs(s))2 = [EA] F̄ with F̄ :=

√
Γt(s)2 +ρ2

esΓs(s)2 = F/[EA].

We may likewise scale the sectional moment m(s) by a characteristic moment quantity. The ob-
vious candidate for the latter is [EI]κL = [EI]/L, which yields m̄(s) := m(s)/([EI]κL) as di-
mensionless moment vector. For the constitutive relation m(s) = [EI]κ(s)b(s)+ [GJ]τ(s)t(s) of



an inextensible Kirchhoff rod with straight untwisted reference configuration this scaling yields
m̄(s) = κ̄(s)b(s)+ρbt τ̄(s)t(s). This illustrates the effect of normalizing the moment to [EI]/L.

As F is constant in equilibrium, the ratio of the terms ‖m(s)−m0‖ and ‖f̂×∆r(s)‖ appearing on
both sides of (2) is likewise constant along the rod. For all s ∈ [0,L] where ‖f̂×∆r(s)‖ 6= 0 we can
rewrite the identity above in the form√

ft(s)2 + fs(s)2 = F =
‖m(s)−m0‖
‖f̂×∆r(s)‖

=: Λ[m,f,r](s) = const. (3)

with ft(s) = [EA]εt(s) or εt replaced by Γt(s) and fs(s) = [GA]Γs(s) for the extensible Kirchhoff
and Cosserat model variants respectively. The cases when ‖f̂×∆r(s)‖→ 0, i.e. if the secant vector
r(s)−r0 becomes (anti)parallel to the force f, or for r(s)→ r0, are removable singularities, as then
‖m(s)−m0‖→ 0 as well, such that the value of the quotient Λ[m,f,r] equals F .

The l.h.s. of the identity (3) can now be utilized to obtain a sharp inequality estimate of the modulus
of either the extensional strain or the shear strain by setting either ft(s) ≡ 0 or fs(s) ≡ 0. This
either leads to F ≥ [EA] |εt(s)| resp. F ≥ [EA] |Γt(s)| or F ≥ [GA]Γs(s). Equality holds whenever
the extensional or the shear force component vanish locally. In terms of scaled dimensionless
quantities (3) can be rewritten equivalently as

|Γt(s)| , ρesΓs(s) ≤
√

Γt(s)2 + ρ2
esΓs(s)2 = F̄ = λ

2
0
‖m̄(s)− m̄0‖
‖f̂×∆r̄(s)‖

= λ
2
0 Λ̄[m,f,r] , (4)

where ∆r̄(s) := (r(s)−r0)/L is the normalized secant vector, and Λ̄[m,f,r](s) := [EI]/L2 Λ[m,f,r](s).
Note that on the r.h.s. of (4) the small parameter λ 2

0 = [EI]/([EA]L2) ' (r/L)2 appears. This
confirms the (rough) estimates suggested in the previous subsection, provided that Λ̄[m,f,r] 'O(1).

For an extensible Kirchhoff rod we obtain |εt(s)| ≤ λ 2
0 Λ̄[m,f,r] as an estimate of the extensional

strain in equilibrium. The corresponding estimate for |ϑs| ≈ Γs = (1+ εt)sin(|ϑs|) results analo-
gously, with an additional factor 1/ρes = [EA]/[GA] on the r.h.s..

The actual numerical value of the constant term Λ̄[m,f,r] depends on a particular equilibrium solu-
tion of the concrete boundary value problem considered. Moreover, the terms ‖m̄(s)− m̄0‖ and
‖f̂×∆r̄(s)‖ in the numerator and denominator of the definition of Λ̄[m,f,r] on the r.h.s. of (4) are
of qualitatively rather different nature: While the former depends on the evolution of the state of
bending and twisting curvature along the rod, or more precisely the change of these curvatures, the
latter depends on the shape of the centerline curve r(s) in terms of its secant vectors ∆r(s) relative
to the constant direction f̂ of the sectional force (but not on its magnitude F = ‖f‖).
This makes it feasible to derive a generic estimate of the former quantity, while a reasonable
estimate for the latter is (in practise) not readily available. Starting e.g. from the scaled constitutive
relation m̄(s) = κ̄(s)b(s)+ρbt τ̄(s)t(s) = m̄b(s)+m̄t(s) for a Kirchhoff rod given above, one finds
the "worst case" estimate ‖m̄(s)− m̄0‖/2 ≤ κ̄max +ρbt τ̄0, where κ̄max is the maximum bending
curvature of the equilibrium solution, and τ̄0 its constant twist, both in units of κL. It is well
known that for nonlinear rod models there often exist multiple equilibrium solutions of different
spatial shape for the same (or similar) sectional forces and moments. This prevents us to make a
comparably "educated guess" for the quantity ‖f̂×∆r̄(s)‖ that proves to be generally valid.

Altogether, these considerations indicate that it is neither straightforward nor feasible to derive a
generally valid estimate of the term Λ̄[m,f,r] valid for a wider class of boundary value problems of
practical interest. However, values of Λ̄[m,f,r] can be obtained from numerical solutions. This will
be investigated further in the examples presented in the following section.



Figure 3. Left: Three different example configurations, all with plane bending. Right: Cur-
vature along the rod with two different y-axes (in [1/m] and dimensionless in units of κL).
Numerical solutions are computed by minimization of the elastic energy subject to the pre-
scribed boundary conditions(see [5] for details).

3 Some illustrative numerical examples
The estimates derived in the previous subsection are in general applicable to a wide class of spatial
equilibrium configurations of a nonlinear rod for boundary conditions that do not enforce stretch-
ing as the main deformation mode or induce sharp local bending with extreme curvature values.
The main impact of large spatial deformations of a rod (i.e. large displacements of centerline posi-
tions and large rotations of the cross section orientations) on stretching and shearing can be studied
already in situations of plane bending with zero torsion, as the latter influences the extensional and
shear strains merely in a quantitative manner, but does not induce any qualitatively new effects.

To illustrate the validity of both the rough and the improved estimate of the extensional strain,
we first investigate three different configurations (see Fig. 3) of an extensible Kirchhoff rod with
parameters given in Table 1.

L r [EI] [EA] [GJ]
300mm 3mm 0.02Nm2 10000N 0.05Nm2

Table 1. Parameters for numerical examples with the extensible Kirchhoff rod, corresponding
to a numerical value of λ 2

0 = 2
9 ·10−4 (or λ0 ≈ 0.47 ·10−2 < r/L = 10−2).

The effective stiffness parameters [EI], [GJ] and [EA] were independently set to typical stiffness
values for electrical cables. Moreover, to meet the assumption in the theoretical investigations,
gravity was neglected.

Each configuration represents a case of plane bending (in the x-y-plane), where one end of the rod
(s = 0mm) is fully clamped while the other end (s = L) is kept moment-free. Consequently, also
the curvature vanishes at s = L. From Fig. 3 one can observe, that for the first configuration the
curvature is strictly smaller than κL = 1/L, while maximum curvature is considerably larger for
the second and third configuration.

In Fig. 4, the simulated extensional strains of all configurations are plotted, together with the rough
estimate λ 2

0 (equal for all configurations), which approximately sets the order of magnitude for
the strains, and the improved estimate λ 2

0 Λ̄[m,f,r]. Obviously, Λ̄[m,f,r] increases with increasingly
stronger curved configurations and always leads to a value for λ 2

0 Λ̄[m,f,r] which fits well to the
maximum occurring extensional strain.

Note that already for the weakly curved configuration No. 1 (with all curvature values below κL),
the maximum extensional strain is significantly larger than its roughly estimated value λ 2

0 , as even



Figure 4. Simulated extensional strain (left: config. 1, middle: config. 2, right: config. 3),
together with rough estimate λ 2

0 and improved estimate λ 2
0 Λ̄[m,f,r].

in that case the factor Λ̄[m,f,r] is not close to 1 as expected, but takes a numerical value of 3.67. In
configuration No. 3, the most strongly curved configuration shown in Fig. 3, the maximum value
of the bending curvature approximately corresponds to a a curvature radius of 8 cross section
diameters (more precisely: κmax = 21.73m−1 ⇒ 1/(2rκmax) = 7.8). Curvatures in this range are
typical in automotive applications, where design guidelines for cable layouts require that curvature
radii should not be smaller than a few cross section diameters. Therefore configuration No. 3 can
still be considered as moderately strong curved from the application point of view. Extensional
strains are still tiny in this case, however a correction factor of Λ̄[m,f,r] ≈ 13 yields an improved
strain estimate with bounds that are an order of magnitude larger than those of the rough one.

Next, to also analyze the estimates for shear strain, we use a discrete Cosserat rod model and set
[GA] = [EA] for the additional effective shear stiffness (leading to ρes = 1).

The rod configurations and corresponding curvatures and extensional strains are practically in-
distinguishable from those shown in Fig. 3 and Fig. 4. Of course, the numerical values are not
identical in detail, as two different discrete rod models are used, and the simulation method con-
sists of an iterative optimization procedure applied to energy minimization, such that it is difficult
to assign solution differences to differences in the model in the presence of differences due to nu-
merical approximations. Therefore we don not show the respective plots of these results, and also
do not attempt to analyze differences in the simulation results of the aforementioned quantities.

Figure 5. Simulated shear strain (left: config. 1, middle: config. 2, right: config. 3), together
with rough estimate λ 2

0 and improved estimate λ 2
0 Λ̄[m,f,r].

The transverse shear strains obtained from the discrete Cosserat rod model are plotted in Fig. 5.
Note that the plotted quantity is not Γs, but the non-vanishing shear strain component Γ(1)(s),
which is a signed quantity. (The other component Γ(2)(s) vanishes identically for plane bending.)



Figure 6. Simulated total extensional & shear strain values (left: config. 1, middle: config. 2,
right: config. 3), together with rough estimate λ 2

0 and improved estimate λ 2
0 Λ̄[m,f,r].

According to (4) the shear strains should be bounded by the same limits as the extensional strains.
For the stronger curved configurations No. 2 and 3 the numerical values exceed the narrow bounds
±λ 2

0 of the rough estimate but stay within the wider bounds ±λ 2
0 Λ̄[m,f,r]. For the weakly curved

configuration No. 1 one observes that the shear strains stay within the narrow bounds ±λ 2
0 .

For completeness we also show in Fig. 6 the simulated values of the total extensional & shear strain
F̄ =

√
Γt(s)2 + ρ2

esΓs(s)2, which exactly matches the theoretically predicted value F̄ = λ 2
0 Λ̄[m,f,r]

given in (4) for an equilibrium configuration of a Cosserat rod, and indirectly also shows that both
f(s) and m(s)+ r(s)× f(s) are indeed constant quantities in equilibrium.

Altogether the examples of plane bending indicate that although the order of magnitude of the
extensional and shear strains is roughly given by the small parameter λ 2

0 ' (r/L)2, the improved
bounds ±λ 2

0 Λ̄[m,f,r] according to (4) yield quantitative information that is consistently more accu-
rate than the one obtained from the rough order of magnitude estimates.

4 Conclusions
In this contribution we systematically investigated the influence of the effective stiffness param-
eters [EA] and [GA] of a Cosserat rod as well as an extensible Kirchhoff rod on the size of the
extensional and shear strains in equilibrium configurations showing moderate bending of the cen-
terline and twisting of the cross sections.

After choosing the rod length L as characteristic unit of length, which induces κL = 1/L as char-
acteristic unit of curvature, we identified λ 2

0 = [EI]/([EA]L2), which equals 1
4

r2

L2 in the well known
special case of a homogeneous elastic rod with circular cross section of radius r, as the small
parameter that roughly determines the order of magnitude of both extensional and shear strains
in equilibrium. Taking the static equilibrium equations for the sectional force and moment vec-
tors f(s) and m(s) of the rod as a starting point, and assuming that no external forces and mo-
ments act on the rod, we were able to derive quantitatively sharp estimates for the extensional
and shear strains, with improved bounds ±λ 2

0 Λ̄[m,f,r] given by the constant, yet configuration de-
pendent dimensionless parameter Λ̄[m,f,r], for which we observed numerical values in the range
Λ̄[m,f,r] ≈ 5 . . .15 even for weakly to moderately strong curved configurations in plane bending.

Our investigations can (and should) be extended w.r.t. various aspects:

At first, we expect that for spatial deformations the values of the parameter Λ̄[m,f,r] are similar to
those observed in plane bending with the same range of centerline curvatures, and that a small to
moderate amount of nonzero twist only adds a likewise small to moderate quantitative correction
to this. This needs to be verified in corresponding numerical experiments.

Next one should include gravity into the investigation. In this case f(s) varies linearly along the



rod, such that Λ̄[m,f,r](s) also is no longer a constant parameter. Nevertheless, we expect that the
bounds ±λ 2

0 Λ̄[m,f,r](s) are still quantitatively correct for cases where gravity is not a dominant
effect for the overall deformation of the rod.

Moreover, we think it should be possible to estimate the dependence of Λ̄[m,f,r] on the particular
equilibrium configuration in terms of characteristic solution properties, e.g. the maximum bending
curvature. This could be utilized to derive "worst case" estimates of the extensional and shear
strains for a wider class of configurations that are less sharp than ±λ 2

0 Λ̄[m,f,r], but more accurate
than the rough order of magnitude estimate ±λ 2

0 .

Finally, we want to address the issue that for cables the effective stiffness parameter [EA] is hard
to measure due to systematic limitations of the experimental setup, and [GA] is not measurable in
practise at all. Our results point out that it might make sense to set these parameters rather than
measuring them, to "favorable" values that still lead to acceptably small extensional and shear
strains, in the sense that the geometry of the deformed rod configuration remains correct, and the
sectional forces and moments are still close to the ones obtained from an inextensible Kirchhoff
rod model.
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