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ABSTRACT 

Tires profoundly impact the dynamics of vehicles, influencing their handling, 

drivability, and ride comfort. Advanced chassis control systems used to improve 

vehicles' safety, performance, and reliability also require knowledge of tire behavior. 

Nevertheless, tires are very challenging to model as they are complex and non-linear 

components. Although simplified models are often employed, they are incapable of 

fully capturing tire behaviors. Using neural networks, i.e., black-box models, of the 

tire represents a common alternative. However, these approaches do not work outside 

the training data distribution, and they need costly and hard-to-measure experimental 

data for training purposes. Thus, this research study proposes a hybrid method while 

combining partially known physics of vehicle dynamics and a recurrent neural 

network to compensate for the unmodeled physics of tires. The developed approach 

learns the tire dynamics automatically from vehicle responses without requiring 

costly measured tire forces but solely relying on signals from an IMU. Lastly, the 

developed hybrid model is validated experimentally, providing accurate and stable 

results. 
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1 INTRODUCTION 

With the advent of novel active safety systems and advanced driver assistant systems, it is of 

primary importance to accurately predict the states and behavior of the vehicle [1]. Tires play a 

key role in such dynamics of the vehicle, as they are the only mean for transferring forces and 

torques between the chassis and road, thus impacting its handling performance, comfort, and 

drivability [2]. Therefore, to control and correctly forecast the responses of a car, a sound 

knowledge of the tire and its properties is crucial. Directly measuring the forces developing on 

the tire involves sensors which are expensive and cumbersome to install, namely wheel force 

transducers. As a results, this does not represent a viable option for commercial vehicles or fleets. 

An alternative approach consists of precisely modeling the physical behavior of tire. Several tire 

simulation models are widespread in the field of vehicle dynamics, ranging from simplified linear 

models to the more complex non-linear ones, such as Dugoff, Pacejka and the Brush tire model 

[3]. In both cases, these models present some shortcomings. Concerning linear models are not 

able to capture the behavior of the tire, which is influenced by several factors like vertical loading, 

inflation pressure, temperature, and other operational conditions [4]. On the other hand, complex 

models like Pacejka’ Magic Formula Tire model are capable to approximate such dynamics 

dependencies, but they require extensive testing to identify all their parameters [5]. During such 
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routines, the tire is normally tested in lab conditions using costly test rigs, which might fail to 

reproduce the actual operating driving conditions.  

Using data-driven black-box models is another possible solution to modeling tire dynamics. 

Thanks to the rapid growth and diffusion of Machine Learning and Deep Learning algorithms, 

during the last years, many works have focused on proposing methodologies based on Artificial 

Neural Networks for predicting tire forces and torques [6, 7, 8]. Even though such Deep Learning 

models can successfully approximate arbitrary non-linear and complex functions [9], they require 

large amount of costly experimental data to be trained in a Supervised Learning approach. 

Additionally, Neural Networks tends to suffer from a sharp drop in prediction accuracy when 

working outside the statistical distribution of the training data. 

A third category of techniques for tire model estimation lies in filter-based methods [3, 10]. A 

wide range of estimators based on filtering algorithms have been developed over the years for 

hard-to-measure vehicle states. Most of these methodologies are based on different variations of 

the original Kalman filter [11]. An Extended Kalman filter which employs a random walk model 

for estimating an adaptive tire cornering stiffness was proposed in [12]. In [13], the authors opt 

for an Unscented Kalman filter, as it does not require the analytical computation of the Jacobian 

matrices. An Extended Kalman filter was also combined with a feedforward neural network, 

trained using high-fidelity simulation data, to predict tire lateral forces [14].  

In this work, a hybrid method is proposed to estimate tire cornering stiffness and lateral forces. 

Such model is composed by both a white-box physical model and a black-box data-driven 

component, namely a recurrent neural network, which compensates for the unmodeled physics of 

the tires, to identify tire cornering stiffness and lateral forces. This approach learns such tire 

properties automatically according to the data collected from vehicle responses, without requiring 

costly measured tire forces but simply relying on signals from an inertial measuring unit and it 

can subsequently update itself against emerging changes due to environmental conditions, driving 

and operational. The hybrid model is trained using input data and available system states, along 

with an error defined on the output of the dynamic model. The model achieves good accuracy 

while overcoming some limitations of pure data-driven approaches and physics-based tire model. 

The paper is structured as follows: in Section 2, the general framework of the proposed Hybrid 

model is described, while the choices of the physical model, Neural Network and Hybrid model 

architecture for the specific application of tire cornering stiffness estimation are detailed in 

Section 3. Lastly, the experimental validation of the proposed methodology and final 

considerations on the results achieved are outlined in the last sections. 

2 HYBRID MODELING  

In classical mechanics, physical concepts and analytical mechanics are used to describe the 

motion of macroscopic objects according to the pioneering formulations of Newtonian mechanics 

and later the reformulations of Lagrangian mechanics and Hamiltonian mechanics [15]. The 

resulting constitutive models are interpretable and generalizable. On the other hand, the 

complexity and nonlinearity of machines and multi-physics phenomena, environmental 

conditions, and a lack of information on how system parameters vary over time sometimes hinder 

the construction of efficient physical models or at least make it very difficult [16].  

The recent development of sensing techniques and machine learning approaches have come into 

the scene to construct neural networks that can act as a black-box function to link inputs and 

outputs to predict motion of dynamic systems [17]. There are a wide variety of neural networks 

such as convolutional neural networks and recurrent neural networks, among others [18]. 

Recurrent neural networks (RNN) have a specific dynamic architecture giving the possibility to 

capture features of dynamics phenomena from time-series data [19]. These high-fidelity models 

suffer from the following drawbacks (i) interpretability; (ii) extrapolation; (iii) generalizability 

[20]. The physical relationships between inputs and outputs cannot be interpreted. The learning 

machines also are fundamentally interpolative and do not excel beyond the span of training dataset 

(the probability distribution). The generalizability also is essential as each dynamic system 

requires a new black-box setup and training, and the trained algorithms should be updated 

according to, for example, material degradation and aging, wear, and crack generation.  

In data science, there is a possibility to integrate statistical learning concepts with classical 
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approaches in applied mechanics and mathematics to discover sophisticated and accurate models 

of dynamical systems from time-series data. Schmidt and Lipson [21] used the genetic algorithm 

to discover motion equations from experimental data and Brunton et al. [22] developed a popular 

approach, the so-called SINDy. As the latter is limited to a function dictionary built by a user, a 

symbolic regression method to generate an adaptive function dictionary was suggested in [23]. 

These approaches have demonstrated a great capability in dynamical systems, fluid mechanics, 

and material science [23], but a lack of available data confines their success.  

The cost of data acquisition is still prohibitive and there are critical locations of mechanisms 

inaccessible for instrumentation [24]. Subsequently, one is encountered with partial information 

from a physical identity, resulting in inaccurate training of neural networks. This issue can be 

alleviated with prior knowledge of a given system, e.g., physical laws and empirically validated 

formulations, which are not exploited in black-box models. Prior knowledge and information can 

guide the training process as a regularization agent such that efficient training with low amount 

of data becomes reachable. An example is such networks do not allow a solution that violates the 

mass conservation law in a mechanical system. Pioneering research work was published in [25] 

where Raissi and his colleagues nicely presented physics-informed neural networks. 

The idea of combining neural networks and governing equations of a system can, in turn, be 

extended to deduce the structure of black-box networks for systems with incomplete known 

physics. A feasible challenge working with multibody systems is that one knows the physics of a 

given system partially due to associated complexity and nonlinearity, lack of information, and 

large multibody systems. Linking the known physics to data-driven models to compensate 

unknown physics can be helpful such that physical equations guide the training towards right 

solution quickly by confining the space of admissible solutions, reducing discrepancies between 

a completely known and incompletely known physics [16]. This approach called hybrid model 

improves predictions and mitigates the training issue of neural network with limited amount of 

data. In the hybrid models, neural networks are trained in a supervised manner using either direct 

or indirect measurements [16, 26]. This methodology also gives the possibility to identify system 

parameters [25]. Hybrid modeling is applicable to both rigid and flexibly multibody systems, Fig. 

1., while the finite element method accounts for the elasticity of components [27]. Its applications 

encompass digital twins, system identification, condition monitoring, and design optimization. 

 

Figure 1. Hybrid modeling framework and applications 

3 HYBRID MODELING FOR WHEEL LATERAL FORCE ESTIMATION 

In this section, the hybrid model architecture for the estimation of lateral tire forces is introduced. 

After describing the physics model and its dynamic equations, the hybrid model is discussed. 

Finally, experimental dataset used for testing and validating the presented framework is outlined. 

3.1 Vehicle dynamics 

The multibody dynamics of a vehicle can be formulated by the equations of motion obtained from 

Newton-Euler equations to which constraint conditions are added as follows [28, 29] 

[
𝐌 𝐂𝑞

𝑇

𝐂𝑞 𝟎
] [
�̈�
𝛌
] = [

𝐅
𝜸
] ,    𝜸 = −(𝐂𝑞�̇�)𝑞 − 2𝐂𝑞𝑡 − 𝐂𝑡𝑡 

(1) 
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where M and q are the mass matrix and generalized coordinates of the system [30]. The force 

vector is designated by F that conveys external forces including normal and tangential contact 

forces [31, 32] along with Coriolis and centrifugal terms acting on the system bodies. λ and C are 

Lagrange multipliers and the holonomic algebraic constraints, respectively, and Cq is the 

derivative of the latter with respect to the coordinates. Employing a standard numerical integration 

technique, the above equation can be integrated over time [33]. For the chosen application, the 

motion of a vehicle can be described while the following assumptions are considered  

• The model has only two degrees of freedom: yaw velocity and car body sideslip at the COG. 

• Rolling and pitching motions are not considered. 

• The aerodynamic efforts are neglected, so as the longitudinal forces. 

• Angles are assumed small, and the trigonometric functions are linearized at the first order. 

Given the previous hypothesis, the resulting dynamics equations, i.e., the bicycle model, are 

{
 

       𝑣�̇� =
1

𝑚
(𝐹𝑦𝑓 cos 𝛿 + 𝐹𝑦𝑟) − 𝑣𝑥𝑟

�̇� =
1

𝐼𝑧𝑧
(𝑙𝑓𝐹𝑦𝑓 cos 𝛿 − 𝑙𝑟𝐹𝑦𝑟)

 (2) 

where 𝑣𝑥 and 𝑣𝑦 are the longitudinal and lateral velocities of the center of gravity (COG) of the 

vehicle, 𝑟 is the yaw rate, 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are the front and the rear tire lateral forces, m is the mass 

of the vehicle, 𝐼𝑧𝑧 is its yaw inertia, and 𝑙𝑓 and 𝑙𝑟 are, respectively, the distances of the COG from 

the front and rear axles. Assuming a linear tire model, the lateral forces can be expressed as 

𝐹𝑦 = −𝐶𝛼𝛼, (3) 

where 𝐶𝛼 is the two-fold cornering stiffness and 𝜶 the tire side slip angle. Given the small angles 

assumption, the side slip angles can be defined as 

𝛼𝑓 = 
𝑣𝑦 + 𝑙𝑓𝑟

𝑣𝑥
−  𝛿,                  𝛼𝑟 = 

𝑣𝑦 − 𝑙𝑟𝑟

𝑣𝑥
 (4) 

In such expressions, 𝛿 defines the steering angle acting on the front wheel. As the scope of this 

work is to estimate tire cornering stiffness without using expensive testing equipment, the chosen 

vehicle responses are the lateral acceleration 𝑎𝑦, the yaw rate 𝑟, and the vehicle side slip 𝛽, which 

can be easily measured and estimated using an inertial measurement unit (IMU). The latter vehicle 

response can be computed as 

𝛽 = tan−1 (
𝑣𝑦

𝑣𝑥
) (5) 

Accordingly, the bicycle model equations can be described in a state-space representation as 

{
�̇� = 𝐀𝐱 + 𝐁𝑢
𝐲 = 𝐂𝐱 + 𝐃𝑢

 (6) 

where 

𝐱 = [𝑣𝑦, 𝑟],  𝐲 = [𝑎𝑦, 𝑟, 𝛽], 𝑢 =  [𝛿] (7) 

and  

𝐀 = −[

(𝐶𝑓 + 𝐶𝑟)
𝑚𝑣𝑥
⁄ 𝑉𝑥 +

(𝑙𝑓𝐶𝑓 − 𝑙𝑟𝐶𝑟)
𝑚𝑣𝑥
⁄

(𝑙𝑓𝐶𝑓 − 𝑙𝑟𝐶𝑟)
𝐼𝑧𝑧𝑣𝑥
⁄

(𝐶𝑓𝑙𝑓
2 + 𝐶𝑟𝑙𝑟

2)
𝐼𝑧𝑧𝑣𝑥
⁄

] , 𝐁 =

[
 
 
 
𝐶𝑓

𝑚
𝑙𝑓𝐶𝑓

𝐼𝑧𝑧 ]
 
 
 

, 

𝐃 = [

𝐶𝑓

𝑚
0
0

] ,           𝐂 = −[

(𝐶𝑓 + 𝐶𝑟)
𝑚𝑣𝑥
⁄

(𝑙𝑓𝐶𝑓 − 𝑙𝑟𝐶𝑟)
𝑚𝑣𝑥
⁄

0 −1
1
𝑣𝑥⁄ 0

] 

(8) 

The front and rear cornering stiffness, being the object of this work, are estimated by means of 

the black-box part of the hybrid model, i.e., a neural network, as explained in the next subsection. 
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From other point of view, one may eventually need to obtain wheel lateral forces. As such, one 

may use Eq. 2, consider cosine of that angle one due to low steering angle at tires, and finally the 

longitudinal velocity constant due to its slight changes over simulation time, leading to  

[

�̇�1
�̇�2
�̇�3
�̇�4

] = [

0 0 1 0
0 0 0 1
0
0

0
0

0
0

−𝑣𝑥
0

] [

𝑞1
𝑞2
𝑞3
𝑞4

] +

[
 
 
 
 
 
0 0
0 0
1

𝑚
𝑙𝑓

𝐼𝑧𝑧

1

𝑚

−
𝑙𝑟
𝐼𝑧𝑧]
 
 
 
 
 

[
𝐹𝑦𝑓
𝐹𝑦𝑟

]  →  �̇� = 𝐀𝐪 + 𝐁𝐮 

 

 

(9) 

where  

𝐪𝑇 = [𝑢𝑦 𝜃𝑦𝑎𝑤 𝑣𝑦 𝑟],   𝐮𝑇 = [𝐹𝑦𝑓 𝐹𝑦𝑟] (10) 

and  

𝐲 = [
�̇�3 + 𝑞4𝑣𝑥

�̇�4
] 

 

(11) 

From the state-space representation of system, the discrete form of the equation can be written as 

follows using the forward Euler integration formula.  

𝐪𝑘+1 = 𝐪𝑘 + (𝐀𝐪 + 𝐁𝐮)𝑘∆𝑡 (12) 

in which k represent the state at time step k and ∆𝑡 is the size of time step. The output of the 

physical system, i.e., y, also includes the linear and angular accelerations of the automobile. Here, 

the time rate of yaw rate is obtained from either IMU or time-differentiation of yaw rate.  

3.2 Neural Network and Hybrid Model Architecture 

The architecture of the developed hybrid model is illustrated in Fig. 2 and is discussed in this 

section. The existence of inertia measuring unit (IMU) in vehicles gives the possibility to detect 

not only linear acceleration but also rotational rate using accelerometers and gyroscopes, 

respectively [34]. In the physical model of a vehicle, the force vector, F, includes tire forces such 

as lateral loads, Fy, which can assumably be related to sideslip angle, Eq. 3, linearly. Hence, one 

requires to estimate the cornering stiffness, 𝐶𝛼, to fully obtain corresponding loads. A neural 

network is combined to the physics-based model to account for the unmodeled physics of tire, 

identifying cornering stiffnesses of front and rear wheels, z. Such a hybrid model does one step 

prediction, but one may be interested in a larger time horizon for which a RNN is used in here.  

 
Figure 2. Hybrid model to estimate lateral forces, zk: {𝐶𝛼𝑓 , 𝐶𝛼𝑟} or {𝐹𝑦𝑓 , 𝐹𝑦𝑟}, j: 𝑘 + 1 → 𝑘 + 𝐿, 𝐲𝑖 =
[y𝑘 y𝑘+1 ⋯ y𝑘+𝐿−1], �̂�𝑖 = [ŷ𝑘 ŷ𝑘+1 ⋯ ŷ𝑘+𝐿−1]. 

This model is fed by (i) state of the system and (ii) input data of L sequence time steps. The 

corresponding outputs, �̂�, are compared to those from measurement to estimate error, i.e., e. the 

error is summed up over the whole-time window of experiment for constructing a loss function, 

Eq. 13, that is the root mean sum of square error (RMSSE). The training process aims at finding 

network parameters, i.e., weights and biases 𝛉, along with possibly uncertain physical parameters 

of vehicle such that the loss function is optimized, Eq. (14).  
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ℒ(θ) = √
1

𝐿𝑁
∑ ∑ e𝑘,𝑖

𝑇 (θ)e𝑘,𝑖(θ)

𝑖+𝑁

𝑘=𝑖+1

𝐿−𝑁

𝑖=1

,              𝐞 = 𝐲 − �̂� 

 

(13) 

and  

θ∗ = argmin
θ
(ℒ(θ)) (14) 

The back-propagation technique is used to correct network parameters, i.e., 𝑤𝑗𝑖, to minimize the 

error in the system. In each iteration, a correction ∆𝑤𝑗𝑖 is applied to the synaptic weight 𝑤𝑗𝑖, which 

can be obtained from the gradient of error with respect to corresponding network parameter, i.e., 
𝑑ℒ

𝑑𝑤𝑗𝑖
=

𝑑ℒ

𝑑e

𝑑e

𝑑𝑤𝑗𝑖
. To elaborate on the back-propagation algorithm, the technique is described for one 

output neuron in connection with the physics-based model, Fig. 3. The first term, i.e., 
𝑑ℒ

𝑑e
, can be 

calculated according to the loss function considered and the second term is obtained as follows 

𝑑𝐞

𝑑𝑤𝑗𝑖
=
𝑑𝐞

𝑑𝐨

𝑑𝐨

𝑑𝑧

𝑑𝑧

𝑑𝑣𝑗

𝑑𝑣𝑗

𝑑𝑤𝑗𝑖
= −1

𝑑𝐨

𝑑𝑧
�̇�𝑗(𝑣𝑗)𝑥𝑖 

(15) 

in which the induced local field 𝑣𝑗 is produced at the point of activation function 𝜑𝑗, Eq. (16). 

 
Figure 3. One signal-flow graph representation of neuron j in contact with physical model. 

𝑣𝑗 =∑𝑤𝑗𝑖𝑥𝑖

𝑚

𝑖=0

 
(16) 

The differentiation of output, o, with respect to the neuron output, z, is done using three-points 

differentiation technique when the model is used to estimate cornering stiffness, otherwise the 

exact differentiation terms are calculated. According to the gradient descent procedure in weight 

space, the correction applied to 𝑤𝑗𝑖 is negative of loss function gradient with respect to weights 

and can be cast as  

∆𝑤𝑖𝑗 = −𝜂
𝑑ℒ

𝑑𝑤𝑗𝑖
 

(17) 

where  is the learning-rate parameter. From a technical point of view, two RNNs are designed, 

in this study, each of which corresponds to each either cornering stiffness or lateral force, 

including four hidden layers with 25, 15, and 10 neurons. Linear and the rectified linear unit 

functions (ReLU) are also used as activation functions.  

In what follows, the error estimation and back-propagation are described for the hybrid model to 

directly obtain lateral forces according to Eqs. 9-12. The error is estimated by comparing the 

augmented output of the multibody system with measurement as is given below 

𝐞𝑻 = 𝐝𝑻 − 𝐨𝑻 = [𝑎𝑦 𝑟 𝑣𝑦 �̇�]
𝑒𝑥𝑝

− [𝑎𝑦 𝑟 𝑣𝑦 �̇�]
𝐻𝑀

 (18) 

where d and o represent experimental data and those from the hybrid model. In order to calculate 

the gradient of the loss function with respect to network parameters, one requires to compute the 

alteration of error due to any differential changes in the input z, which is given as follows 

𝑑𝐞

𝑑z
= −1 ×

𝑑𝐨

𝑑z
     z ∈ {𝐹𝑦𝑟, 𝐹𝑦𝑓} 

(19) 

where  
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𝑑o

𝑑𝐹𝑦𝑟

𝑇

= [
1

𝑚
−
𝑙𝑟
𝐼𝑧𝑧
𝑑𝑡

1

𝑚
𝑑𝑡 −

𝑙𝑟
𝐼𝑧𝑧
]           

𝑑o

𝑑𝐹𝑦𝑓

𝑇

= [
1

𝑚

𝑙𝑟
𝐼𝑧𝑧
𝑑𝑡

1

𝑚
𝑑𝑡

𝑙𝑟
𝐼𝑧𝑧
] 

(20) 

3.3 Experimental dataset 

The above proposed hybrid model is validated experimentally on a test vehicle. The chosen 

vehicle is an electric Siemens SimRod, in Fig. 4. In order to measure all the required signals, the 

SimRod has been equipped with an IMU, a wheel force transducer at each wheel and a 

potentiometer. The IMU allows to capture the accelerations and velocities of the car body along 

the XYZ axis as well as the corresponding angle rates (roll, pitch, and yaw). The Kistler wheel 

force transducers measure the forces and torques developing at the tire, which are needed as a 

reference to assess the accuracy of the predicted lateral forces. Lastly, the angle imposed by the 

driver at the steering wheel during track testing is acquired by means of the potentiometer, as it 

represents the input to the bicycle model, together with the longitudinal speed of the vehicle. 

 

Figure 4. Siemens SimRod electric vehicle, equipped with wheel force transducers. 

To thoroughly evaluate the lateral dynamics of the SimRod, different vehicle dynamics maneuvers 

are performed. Each maneuver is characterized by a different longitudinal speed as well as various 

profiles, amplitudes, and frequencies of steering wheel angle, as described in Fig. 5. In addition, 

overall mass of the SimRod is 930 Kg, its yaw inertia 700 Kgm2, and the wheelbase length is 

2.346 m. The distance of front axle to the COG is 1.175 m while steering ratio at wheels is 20. 

 
Figure 5. Profiles of longitudinal speed and steering wheel angle for step and sine maneuvers. 

4 RESULTS AND DISCUSSION 

This section aims at reporting on the validation and performance of the developed method. Before 

starting, it is worth mentioning that the programming codes to implement the presented method 

are all written in MATLAB (R2022b) and the algorithm is run on a 1.80 GHz personal computer 

with Intel(R) Core(TM) i5;8250U CPU. The prediction performance of the RNN hybrid model is 

evaluated by monitoring and analyzing the RMSSE. Moreover, the trained model is validated 

through the validation dataset that are sampled out from the track testing data in the first place. 

The model first is examined and verified against a set of generated data from the available 

dynamics model of a vehicle while cornering stiffnesses values are considered constants. Then, 

the cornering stiffness of front and rear tires are estimated using experimental data from track 
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testing of the SimRod. Specifically, a step maneuver is employed to check the developed model 

to directly determine cornering stiffness values of front and rear wheels. The learning process 

stops as the computation converges, Fig. 6d. The vehicle motion obtained using the estimated 

values of cornering stiffness of both tires, Figs. 6a and 6b, complies well with the measured data, 

namely lateral acceleration shown in Fig. 6c. The lateral forces are also calculated, Eq. (3), and 

good agreements were observed in comparison with those from measurements.  

 
Figure 6. Estimating cornering stiffness: (a) front wheel cornering stiffness, (b) rear wheel cornering 

stiffness; (c) lateral acceleration; (d) root mean sum of squared error.  

 
Figure 7. Estimating lateral forces from step maneuver data: (a) front wheel lateral forces, (b) rear wheel 

lateral forces; (c) lateral acceleration; (d) angular yaw acceleration. 

There is an observation issue of cornering stiffness magnitudes according to Eq. (3) that results 

in the matrices defined in Eq. (8), which is the cornering stiffness cannot be observed when 

sideslip angle is zero, Fig. 5. One may argue that the cornering stiffness values, reported in Fig. 

6, associated with that time period are not reliable. A remedy is to estimate directly wheel lateral 

forces instead, as is formulated in Eqs. (9) – (12). Using such a model, respective results of two 

different maneuvers, namely step and sine, are acquired. The corresponding outcomes include 

lateral tire forces, which are compared to those measured by means of wheel force transducers 

and presented in Figs. 7a, b and Figs. 8a, b, and vehicle responses, i.e., linear acceleration and 

angular yaw rotations compared to experimental data in Figs. 7c, d and Figs. 8c, d, respectively. 

One can conclude that the outcomes comply well with measured data of the automobile motion 
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and tire loads. It demonstrates the capability of developed approach to predict vehicle parameters 

and tire non-linear dynamics without costly and hard-to-install instrumentations. This model 

achieves good accuracy, while overcoming some of the limitations of pure data-driven approaches 

and physics-based tire model. The procedure is generalizable as can update itself against emerging 

changes due to environmental conditions, driving and operational as well as tire conditions, e.g., 

tire’s inflation pressure, wear, and temperature. As the learning process becomes an inherent 

characteristic of this model while using the data measured by means of the vehicle sensors, one 

can utilize this hybrid simulation for different vehicle variants and tire dimensions. 

 
Figure 8. Prediction of lateral forces from sine maneuver data: (a) front wheel lateral forces, (b) rear wheel 

lateral forces; (c) lateral acceleration; (d) angular yaw acceleration. 

5 CONCLUSIONS AND FUTURE WORK 

A hybrid model was developed to predict tire cornering stiffness and lateral forces, linking a 

white-box physical vehicle model to a recurrent neural network. The latter compensated the 

unknown physics of tire behaviors being very complex and nonlinear. The suggested approach 

learnt the unknown sub-system of a multibody system automatically in a supervised manner using 

merely the vehicle responses collected by means of an IMU without any need of costly wheel 

force transducers to measure tire forces. The method was validated against experimental data for 

multiple maneuvers. One can conclude that the hybrid model complied well with measured data 

of the automobile motion. Overall, the capability of the developed method to estimate vehicle 

parameters and tire’s non-linear dynamics without costly and hard-to-install instrumentations was 

demonstrated. This is an ongoing research study that aims at extending the developed model by 

integrating more sophisticated vehicle model of 15 DoF. The other research direction is to develop 

a robust and efficient differentiation technique outperforming available methods for noisy data. 
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