
ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

Dynamics of a 3R spatial robot based on a GPU approach

Louis Guigon1, Benjamin Boudon1, Andrés Kecskeméthy2

1 Université Clermont Auvergne, CNRS,
SIGMA Clermont, Institut Pascal

F-63000 Clermont-Ferrand, France
[guigon.louis, boudon.benjamin]@sigma-clermont.fr

2 Chair of Mechanics and Robotics
University Duisburg-Essen

Lotharstr. 1, 47057 Duisburg, Germany
andres.kecskemethy@uni-due.de

ABSTRACT
This paper presents an approach to solve the dynamics of a mechanism using parallel
processing on Graphic Processing Units (GPU). Starting from the SYMKIN package
[1, 2] which generates the kinematics and the dynamics of any system using the sym-
bolical software Mathematica, a paralleling process has been designed to maximize
the number of equations which can be performed at the same time on the GPU. To do
so, several techniques have been used to group equations into blocks of parallel cal-
culations. Then, blocks are translated and exported to a CUDA environment in order
to be processed on the GPU. Finally, an automated generation of the parallel blocks
is made to ease the use of the package, permitting to the user to obtain a working
Visual Studio project simply by entering the system parameters. The implementation
of the method is currently underway and concrete execution times will be presented
at the conference. These could not be included here due to not yet finished coding but
it is hoped that the concepts presented here are suitable to understand procedure for
efficient GPU kinematical and dynamical simulation.
Keywords: Symbolic equations, Parallel processing, Dynamics, Hard-Real Time.

1 INTRODUCTION
In modern robotics, the use of complex models is often required to obtain better performances.
However, those models result in a heavy load of calculations for processors due to their complexity.
A first example can be the use of a digital twin for immersive simulations where the simulated
scenario and the robot motion should be synchronized in Real-Time to obtain the "immersive
effect" as does the Kuka Robocoaster [3]. Another example is the processing of complex controls
such as computed torque for robot dynamics which results in a gain of precision but an heavy load
of calculation on processors [4].

Since the beginning of the 1980’s, Graphic Processing Units became famous in arcade games first,
and then for displaying images on computer screens. Designed as a support for the Central Pro-
cessing Unit (CPU) to process graphics, the GPU is capable to calculate hundreds of calculations at
the same time thanks to its multi-processor architecture. Nowadays, the GPU is mainly developed
for video games to simulate detailed environments and also for general processing tasks thanks to
the General Purpose on Graphic Processing Units (GPGPU) [5]. GPGPU is a major contribution
to open GPU architectures to research and general applications. For instance, linear algebra and
matrix multiplication are a common example to prove the benefits of a parallel architecture [6]. A
hard competition between GPU manufacturers results in a fast evolution of this parallel architec-
ture, with an average of one new architecture commercialized every two years. In other words, the
GPU is a modern tool which is accessible as each computer has one (integrated or dedicated) and
the development of new architectures pushes back the limits of parallel processing. Finally, the
GPU is not bound to decline soon as it is the main organ of multimedia advertisement.

2 DEVELOPMENT
The sum-up of the project is presented in Fig. 1. The developments focus on different points
to automate the generation of GPU code given a system description as an input. The process



generates the equations of motion from the description, thanks to the SYMKIN package, and then
parallelize them in different levels and techniques. Afterwards, Parallel calculations are grouped
into blocks which are translated and exported to a GPU-compatible code. In the context of the
project, CUDA is the chosen environment as it is a well documented and efficient interface but the
algorithm is flexible enough to adapt to other environments such as OpenCL. Finally, the code is
automatically exported to a Visual-Studio project which is ready for execution.

Studied
Mechanism

Equations of 
motion 

generated with 
SYMKIN

Parallelization
GPU Code 

Generation
Solving on 

GPU

Mathematica

Symbolic 
equations

Dependency 
layers

GPU code

CUDA

Minimal 
set of 

parameters

Studied
Mechanism

Equations of 
motion 

generated with 
SYMKIN

Parallelization
GPU Code 

Generation
Solving on 

GPU

Mathematica

Symbolic 
equations

Dependency 
layers

GPU code

CUDA

Minimal 
set of 

parameters

Figure 1. Generation of the GPU code from a given mechanism.

2.1 Generation of dynamic equations
Prof A.Kecskeméthy designed SYMKIN, a Wolfram Mathematica package to generate symbol-
ically the equations of motions (EoMs) [1, 2]. SimKin helps the designer to obtain a minimal
coordinate formulation of the EoMs with as an input a minimal set of parameters and closed form
solutions of the geometry equations. The result is an ordered set of symbolic equations of the
EoMs in a ODE form.

A first approach of parallel processing has been considered in the SYMKIN context, using a CO-
ordinate Rotation in DIgital Computer (CORDIC) FPGA board [7]. With an optimization of the
pipeline and the processing in-parallel of arrays, the processing time has been reduced by a factor
of 15 with respect to a numerical solver.

2.2 Parallel processing
The current work keeps the idea of paralleling calculations, now using GPUs. GPGPU proposes
many environments to code this parallel architecture. As an example, NVIDIA developed CUDA
which let the users program their GPU using a concept of pointers to parallel their algorithms. As
shown on Fig. 2, a hierarchy of fictive elements is designed to control the threads of a GPU. A
thread is an independent sequence of instructions placed at the bottom of this hierarchy as they are
parallelized into blocks and blocks into a grid. This distribution is designed to spread memory and
avoid bottlenecks in memory accesses as each element in the hierarchy has its dedicated memory:

• Local memory for threads

• Shared memory for blocks

• Global memory for the grid

In order to point threads in the algorithm, pointers have been introduced. In this sense, the selec-
tion of a thread through a block is done by threadIdx and a block through the grid is done by
blockIdx. Those pointers are extended to the dimension used in the code with a suffix x, y or z
for the three dimensions.

Thus, the use of pointers in the algorithm informs the CUDA compiler that operations have to be
processed in parallel. To illustrate this concept, the for loop, often used in many programming
languages, uses an incremental pointer which evolves for each iteration of the loop. In parallel pro-
cessing, the incremental pointer is replaced by the parallel pointers presented above as described
in Tab. 1.



Block

Composed of threads
Size is accessible with 

blockDim

th
read

Id
x.y

th
read

Id
x.y

threadIdx.z

th
read

Id
x.y

th
read

Id
x.y

threadIdx.z

b
lo

ckId
x.y

b
lo

ckId
x.y

blockIdx.z

b
lo

ckId
x.y

blockIdx.z
b

lo
ckId

x.y

b
lo

ckId
x.y

blockIdx.z

Grid

Composed of blocks
Size is accessible with 

gridDim

1D 2D 3DDimension :

Block

Composed of threads
Size is accessible with 

blockDim

th
read

Id
x.y

th
read

Id
x.y

threadIdx.z

b
lo

ckId
x.y

b
lo

ckId
x.y

blockIdx.z

Grid

Composed of blocks
Size is accessible with 

gridDim

1D 2D 3DDimension :

Figure 2. Description of CUDA pointers for GPGPU.

Table 1. Example of a vector addition using serial and parallel programming.

Algorithm
Serial for(int i = 0; i < 10; i++) { C[i] = A[i] + B[i] };

Parallel int i = threadId.x; C[i] = A[i] + B[i];

Parallel processing is efficient for processing data in parallel but the main constraint is the depen-
dency between this data. Consequently, linear algebra is easily parallelizable as each element of
a matrix can be calculated independently from the others. However, the concept of parallelism
becomes hard to figure out for serial processes. The parallelization can be operated on different
levels. The first level concerns generated equations which have to be sorted with respect to their
dependency and the second level parallelizes the mathematics to perform an equation in a minimal
amount of steps.

2.2.1 Equation dependancy
Concerning the equations, SYMKIN outputs a set of minimal equations in processing order. Using
this set, the paralleling issue is to sort independent equations and to group them in parallel blocks.
A tree is built on Fig 3a to get linkages between equations, named Vi. It also results in a better
overview of the parallel layers, corresponding to the lines of the tree. In the work of Postiau [8],
the notions of processing "as soon as possible" and "as late as possible" are introduced to describe
two methods of paralleling. In the first method Fig. 3a, equations are processed as late as possible.
The second method, "as soon as possible", is presented on Fig. 3b. Using this method, the process
shows several benefits to solve the set of equations:

• Elementary calculations are sorted on the first layer (bottom of the tree) which highlights
redundant calculations.



• Calculations including system variables are grouped on the first layer which allows trigono-
metric simplifications as a processor calculates using the CORDIC method which calculates
the sine and cosine simultaneously.

• The GPU workload to calculate this set is known as the first layer will have the most equa-
tions to proceed and then the workload will decrease with steps as shown on graphs of
Fig. 3b

Layer Layer

A
llo

ca
ted

 p
ro

cesso
r

A
llo

ca
ted

 p
ro

cesso
r

Layer Layer

A
llo

ca
ted

 p
ro

cesso
r

A
llo

ca
ted

 p
ro

cesso
r

a b

Figure 3. Trees of dependancy between equations, sorted for calculation as late as possible
(a) and as soon as possible (b).

The method used in the parallelization process is "as soon as possible" due to the benefits it occurs
for algorithm simplifications. After paralleling equations, it is important to study the mathematics
which defines each equation.

2.2.2 Mathematical operation
Mathematics are regulated with strict rules which ensure a good result for a specific calculation.
To parallelize mathematics, it is important to define clearly the priority of calculations. This is
where the brackets justify their importance. As an example, the addition of seven variables as
presented in Fig. 4 is a simple modification of priority in the sum:

sum = a+b+ c+d + e+ f +g (1)

Serial : sum = (((((a+b)+ c)+d)+ e)+ f )+g (2)

Parallel : sum = ((a+b)+(c+d))+((e+ f )+g) (3)

In Eq. 2, the brackets are placed to show how a serial processor sees and sums the seven elements.
Each step requires to calculate the current addition, save it and iterate to next addition until the
seven variables have been added. However, Eq. 3 is designed for a parallel execution. It requires
more resources as the first step process three additions and save the three results but this method
divides by two the number of steps required to calculate the sum.

Paralleling mathematics is a case by case study as all equations are different but some properties
remain identical between different equations:



• Each equation is an operation of one or two elements, which are consecutively an operation
of two sub-elements until obtaining a constant or variable.

• Successive operations of same type can be grouped by two to calculate them in parallel.

Using the properties, the paralleling scheme for mathematics is first the determination of priorities
and then the process can be assimilated to the scheme applied to the set of equations.

ParallelSerial

1

2

3

4

5

6

a b c d e f

ab cd ef g

abcd efg

a b

c

d

e

f

ab

abc

abcd

abcde

abcde g

Steps ParallelSerial

1

2

3

4

5

6

a b c d e f

ab cd ef g

abcd efg

a b

c

d

e

f

ab

abc

abcd

abcde

abcde g

Steps

Figure 4. Parallelization and step reduction using parallel processing for a sum.

3 EXPORT
Most GPGPU environments are designed on the C language with bindings to the GPU dedicated
language. In other words, launching a GPU kernel is to call it through a C script using structures
imposed by the chosen environment. For instance, Tab. 2 shows the syntax for two different
environments, CUDA and OpenCL, for two operations. This example shows that switching from
an interface to another can be done by choosing another syntax. Thanks to the concept of rules
introduced in Mathematica software, this switching is possible with the definition of rules for each
environment. Those rules are then used to replace the desired function for the chosen environment
when generating the code.

Table 2. GPU environment bindings

Environment Kernel call Pointer
CUDA __global__ name(){} threadIdx

OpenCL __kernel void name(){} get_local_id()

The code is generated in blocks of parallel calculations which are then added to kernel files linked
to visual studio project. As a result, The exported code is a working Visual Studio project contain-
ing the function which calculates the equations of the system on the GPU.

4 APPLICATION TO THE 3R SPATIAL ROBOT
To process the algorithm, a serial chain has been chosen with an example of a spatial 3R robot (it
corresponds to the 3 first degree of freedom (DoF) of a classic serial robot with the Dofs associated
to the wrist blocked) described in Fig. 5. The robot is actuated on three revolute joints around the
following directions and parameters : {θ1, z⃗0}, {θ2, y⃗1} and {θ3, y⃗2}.

The equations of motion have been generated with the function GenerateEqm implemented in
SymKin. This function calculates the global kinematics of the input system and then generates



1

2

3

2x

3x
3

3z
2 3yy =

2z

1 2yy =

2x

1z 2z

1x

2

0y

0x

1y0 1zz =

1x

1

O0=O1=O2

O3

G2

G3

l3

l2
E

Figure 5. Parameterized kinematic scheme of a commercial spatial 3R robot.

the equations of motion with the combined use of d’Alembert’s principle and backward recursive
Newton-Euler algorithm [2].

The Tab. 3 shows preliminaries results concerning the parallelism of the 3R equations of motion
with different processing methods. The minimal set generated by SYMKIN is in this case study
composed of 68 equations. The first method shows the serial execution which corresponds to an
execution of the equations one after each other. In this case 68 equations are proceeded which
represents 306 steps of calculation for the mathematics. On the other hand, the parallelization
process groups the 68 equations with respect to their dependency, which results in 9 blocks of
equations to be executed serially. After the mathematical parallelization, the resolution of the
equations takes only 40 steps of execution.

Table 3. Step reduction for the processing of a 3R robot equations of motion.

Processing method Steps for equations total number of operations processed serially
Serial computation 68 306

Parallel computation 9 40

5 CONCLUSION
The present work shows the step reduction in solving the equations of motion for a serial chain
case. Results have shown that the parallelization of the equations and the mathematics generated
by SYMKIN reduces the number of steps to solve them by more than 7. The implementation of the
method is currently underway and concrete execution times will be presented at the conference.
These could not be included here due to not yet finished coding but it is hoped that the concepts
presented here are suitable to understand procedure for efficient GPU kinematical and dynamical
simulation.

This first result is also promising as the parallelization process is considering only the set of equa-
tions and the mathematics. A further research on dynamic formulations (Kinetostatic transmission



elements [9], Composite-Rigid-Body [10], Articulated-Rigid-Body [11] reduced in different refer-
ence points and expressed in different frames) for different topology will be analyzed, taking into
account paralleling issues. Parallelization of specific chains with an adapted formulation should
improve the results for a better step reduction of the equations of motion.

REFERENCES
[1] Kecskeméthy, A., Krupp, T.: Application of symbolical kinematics to real-time vehicle

dynamics. Technical report, European Research Office of the U.S. Army (1995)

[2] Kecskeméthy, A., Krupp, T., Hiller, M.: Symbolic processing of multiloop mechanism dy-
namics using closed-form kinematics solutions. MSD 1(1) (1997) 23–45

[3] Kecskeméthy, A., Masic, I., Tändl, M.: Workspace fitting and control for a serial-robot
motion simulator. In Ceccarelli, M., ed.: Proceedings of EUCOMES 08, Dordrecht, Springer
Netherlands (2009) 183–190

[4] Kingsley, C., Poursina, M., Sabet, S., Dabiri, A.: Logarithmic complexity dynamics formula-
tion for computed torque control of articulated multibody systems. Mechanism and Machine
Theory 116 (2017) 481–500

[5] Wu, E., Liu, Y.: Emerging technology about gpgpu. In: APCCAS 2008 - 2008 IEEE Asia
Pacific Conference on Circuits and Systems. (2008) 618–622

[6] Matsumoto, K., Nakasato, N., Sedukhin, S.G.: Performance tuning of matrix multiplication
in opencl on different gpus and cpus. In: 2012 SC Companion: High Performance Comput-
ing, Networking Storage and Analysis. (2012) 396–405

[7] Krieger, C., Hosticka, B., Krupp, T., Hiller, M., Kecskeméthy, A., Hosticka, B.J.: A com-
bined hardware/software approach for fast kinematic processing. Microprocessors and Mi-
crosystems 22 (9 1998) 263–275

[8] Postiau, T.: Génération et Parallélisation des Équations du Mouvement de Systèmes Multi-
corps par l’Approche Symbolique. PhD thesis, Université catholique de Louvain (2004)

[9] Angeles, J., Kecskeméthy, A.: Dynamics Modelling. Springer (1995)

[10] Walker, M.W., Orin, D.E.: Efficient Dynamic Computer Simulation of Robotic Mechanisms.
Journal of Dynamic Systems, Measurement, and Control 104(3) (09 1982) 205–211

[11] Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. The
international journal of robotics research 2(1) (1983) 13–30


