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ABSTRACT 

This paper is a summary of the research done at the University of Seville in the field 

of railway dynamics in the last 20 years. This research is separated in this paper in 

two complementary lines: (1) the development of improved computational models 

for the dynamic analysis of rail vehicles and (2) on the development of experimental 

techniques for improved safety and maintenance of vehicles and tracks. 

Keywords: Railway dynamics, railway multibody dynamics, track geometry 

measurement. 

1 INTRODUCTION 

Trains are safe, efficient, reliable, environmentally friendly… These ideas are repeated today in 

the media; however, the user experience may not exactly match that perception, which means that 

the train may not be always such an attractive transport option. There is there is a lot of room for 

improvement in rail transport technology. From the user’s point of view, the train ride is 

sometimes annoying because it moves forward chaotically. When driving a car, you can keep the 

velocity approximately constant at the road even when many other cars surround your own at a 

relatively short distance. However, the train can be apparently alone in the track, but it stops from 

time to time, or it decreases drastically its speed without apparent reasons. On short or medium 

distance trains it is a common experience to be stopped in the countryside waiting for who knows 

what.  

Density of trains in the track is far smaller that density of cars in the road. It is understandable 

that there should not be may aircrafts flying close to each other, but the same idea is not apparent 

for trains. Using autonomous vehicles would help to increase the trains density, and therefore to 

make the transport more efficient, without compromising safety. Massive use of autonomous cars 

is around the corner. There are autonomous trains too, but this technology seems to be developing 

much slower. Driving a car requires to steer the car to follow the road geometry and to avoid the 

impact with other vehicles that can move unexpectedly. The train case is clearly easier. The train 

is not really driven. The wheel-rail geometry makes steering a passive action. Essentially, only 

the forward velocity is controlled. It seems that autonomous trains are easier to develop than 

autonomous cars. Autonomous trains would allow the use of smaller train units, with little 

probability of impact, allowing to increase the density of trains in the track. The development of 

autonomous trains would be enhanced with better understanding of the train-track dynamics, 

using low-cost sensors and accurate and adjustable vehicle dynamic models. These technologies 

will benefit with the development of improved rail multibody models.  

Following the comparison with the car transport, safety of the train ride is easier to evaluate or to 

guarantee by electronic control units (ECU). The scenarios of lack of safety that can occur when 

driving a car are much more varied than in the case of the train. In the train, safety of the ride is 

based on criteria (derailment, Prud’homme, wheel unloading and turnover safety criteria) that 

depend exclusively on the wheel-rail contact forces. However, the development of safety ECU in 

the railway industry also lags behind that of the automobile industry. The development of dynamic 

models for the onboard estimation of the wheel-rail contact forces, accounting for the real wheel 



profile and rail irregularities, would be of great help to enhance safety ECU’s in trains. These 

technologies can be boosted with the use of onboard rail multibody models. 

In addition to good dynamic models, the onboard estimation of wheel-rail forces requires the 

measurement of wheel geometry (profile shape, equivalent conicity), track geometry (long and 

short-wave irregularities) and vehicle suspension properties (stiffness and damping coefficients). 

These values/parameters turn out to be essential in the maintenance of tracks and vehicles. 

Suspension failures are the most likely cause of a vehicle going to a shop. Wear of the wheel 

profiles is fundamental for the vehicle dynamics and a key aspect of vehicle maintenance, as it is 

the track irregularity in track maintenance. Therefore, the ECU that can be used to improve the 

train ride safety can also be of great help for vehicle and track predictive maintenance.  

Maintenance in the rail industry is very expensive and the industry needs new methods and 

techniques to lower it. Treating the mentioned data with Big Data, AI and Cloud Computing 

techniques will do the rest. 

This paper explains the developments in computational and experimental railway dynamics at the 

University of Seville in the last 20 years. It includes 2 more sections. Section 2 is devoted to 

advances and simplifications of the computational models of the rail vehicle-track dynamic 

systems. Section 3 is devoted to industrial applications based on the models developed in Section 

2.  

2 MULTIBODY MODEL OF THE RAIL VEHICLE-TRACK DYNAMIC SYSTEM 

The application of multibody dynamics to railway dynamics has some features that require the 

development of specific modeling and computational tools. These features are: 

1. The vehicle-track relative motion has more interest that the vehicle absolute motion. 

2. Very long-distance simulations are of interest. 

3. Complex geometry is involved in the definition of the track and the wheel-rail contact 

interaction. 

4. Modeling the track flexibility is challenging due to its nearly infinite length. 

During the last two decades, the research group of the author has developed modeling and 

simulation tools that account for these features [4-23]. In many cases, these tools involve the 

simplification and linearization of different terms of the vehicle-track equations of motion.  The 

set of computational tools summarized in this work includes: 

1. Use of non-inertial track frame for the kinematic description of the vehicle-track system. 

2. Modeling of the railway vehicle as a set of open-chain mechanisms. 

3. Use of a non-uniform set of arc-length, track-relative and joint coordinates. 

4. Simplification of generalized inertia forces. 

5. Linearization of generalized suspension forces. 

6. Knife-edge equivalent wheel-rail contact geometry (KEC method). 

7. Moving modes method (MMM) for modeling track flexibility. 

This section describes these methods for the simplification of the equations of motion (EOM) of 

the vehicle-track dynamic system. 

2.1 Linear equations of motion 

The vehicle-track dynamic system can be considered as a multibody system. As such, the 

equations of motion (EOM) are a set of differential-algebraic equations (DAE) written in terms 

of a set of dependent coordinates, and their time-derivatives, and Lagrange multipliers to account 

for the reaction forces due to the assumed constraint equations. However, the dynamics of the 

vehicle, and possibly of the track, can be considered as almost linear under certain circumstances. 

For example, the vertical dynamics of a vehicle modeled with rigid bodies and linear suspension 

elements travelling on a rigid tangent (straight) track is well modeled using linear ODE. The 

lateral motion of rail vehicles in tangent or circular tracks [2] can also be modeled with linear 

ODE. An interesting question is under what conditions, and using what set of generalized 

coordinates and frames, the multibody DAE can be simplified to linear ODE for railway systems. 

This question can be expressed as: 
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where q is the array of generalized coordinates, M is the coordinate-dependent mass matrix, Φ is 

the array of constraint equations, Q is the vector of generalized applied forces, Qv is the vector of 

generalized quadratic-velocity inertia terms, M is the value of M at q = 0, C is the damping 

matrix, K is stiffness matrix and F is the vector of linearized applied forces. 

The author believes that for a track with general geometry no formulation exists that can describe 

approximately the 3D dynamics of the vehicle-track system using linear ODE. The closest 

formulation is the weakly coupled vertical and lateral dynamics formulation for rail vehicles 

described in [19]. In this formulation, the generalized coordinates are divided into vertical and 

lateral coordinates (longitudinal motion is supposed to be prescribed), as follows: 
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The equations of motion are given by: 
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where superscrip s and c stand for suspension and contact, respectively. Therefore, for the lateral 

dynamics, there are damping and stiffness matrices associated with the suspension systems and 

the wheel rail contact. This formulation uses the equivalent conicity concept for the wheel-rail 

contact and linear Kalker theory [2] to calculate the creep (contact-tangential) forces. The two set 

of linear ODE in Eq. (3) cannot be solved independently becuse there are coupling terms. These 

terms are the reason to call the formulation „weakly coupled” (see [19] for details). The 

coordinates and frames used in this formulation are described next. 

2.2 Generalized coordinates and frames of reference 

For the kinematic description of rail vehicles three different frames can be used: 

1. The global-inertial frame: ; , ,O X Y Z  

2. The body-track frame (for body i): ; , ,bti bti bti btiO X Y Z  

3. The body frame:  ; , ,i i i iO X Y Z  

 
Figure 1. Kinematics of the bodies of a railway vehicle with relative body-track frame coordi-

nates 

The body-track frame is defined such that the relative position vector 0
T

i i i

y zr r =  r of the 

body frame with respect to the body-track frame has zero x component along the track centerline. 

Therefore, for each body i, the set of coordinates: 
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describes the absolute position of the body-track frame (arc-length coordinate is ), the relative 

body frame to body-track frame position (position vector i
r ) and relative body frame to body-

track frame orientation (orientation coordinates i
Φ ). 

The main advantage of the use of track-relative coordinates instead of absolute reference coordi-

nates is that they facilitate linearization of the equations of motion (EOM) that is very helpful for 

the steady-state running analysis, stability analysis or curving analysis of the vehicles. On the 

other hand, the kinematics becomes more involved because the track geometry appears in the 

calculation of the position and orientation of the bodies. 

Other railway formulations use a single track-frame for the kinematic description of the whole 

railway vehicle [18]. This way, the total number of arc-length coordinates reduces to one. One 

important advantage of this option, which is not considered in this paper, is that the calculation 

of the generalized suspension forces is easier because all bodies are descried with respect to the 

same track-frame. This fact facilitates the calculation of relative distances and their time-deriva-

tives needed to obtain the spring and damping forces. The use of a single-track frame is not so 

convenient for modeling long trains and/or tracks with narrow curves. In these cases, the relative 

angles 
i

Φ can be so large that kinematic linearization due to small-angles assumption is not rec-

ommendable.  

2.3 The rail vehicle as a multibody system 

Any rail vehicle can be modeled as a set of open-loop chains of bodies connected with spring-

dashpot force elements. For each chain i in the vehicle, a base body is selected. The generalized 

coordinates used to describe the motion of the chain includes a set of arc-length and track-relative 

coordinates 
T

i i i i i i i

t y zs r r    =  q (as explained in previous subsection) with respect 

to the chain-track frame ; , ,cti cti cti ctiO X Y Z , plus a set of joint-relative coordinates i
Θ  (usually 

relative angles) for the kinematic joints, as follows: 
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 Therefore, for each chain, the following set of coordinates can be used: 
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The set of coordinates used for the whole vehicle is given by:  
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=  
  

q q qL         (7) 

Using this model and set of coordinates, the vehicle-multibody system is constraint-free except 

for the wheel-rail constraints, in case a constraint-based wheel-rail contact model is used. 

 

 



 

Figure 2. Model of rail vehicle as a set of open-chain mechanisms. 

2.4 Linearized kinematics 

The use of the set of coordinates given in Eqs. (4) – (7) for the description of the vehicle kinemat-

ics has the important advantage that all angles can be treated as small angles, with the only ex-

ception of the rolling angles of the wheels or wheelsets. The small angle assumption can be used 

to linearize the rotation matrices considering the sine of the angles equal to the angles and the 

cosines equal to one. This approximation results in an important simplification of the equations 

of motion. However, the small angles assumption must be used with care to yield a set of physi-

cally meaningful equations.  

The use of track-relative coordinates has an important disadvantage that is not that obvious. The 

kinematic relationship depends on the geometry of the track centerline. That means that the abso-

lute translational velocity 
j

Gv and angular velocity j
ω
)

of a rigid body j are functions of the curva-

tures (horizontal, vertical and twist curvatures) of the track centerline, that in turn are functions 

of the arc-length coordinate s j, as follows: 
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where the velocity transformation matrices  and j j
H G  are functions of the coordinates 

ci
q and 

the track geometry. In the case of a single body chain, as any of the bodies shown in Fig. 1, the 

velocity transformation matrices yield: 
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where ,  and h v tw   are the horizontal, vertical and twist curvatures of the track centerline, re-

spectively.  



A second source of linearization is to neglect the influence of the track geometry in the velocity 

transformation matrices. Minimum radius of railroad curves in metropolitan trains is about 30 m. 

Assume that the three curvatures take the (very large) value: 
11 30 0.0033mh v tw   −= = = = . 

Assume that the vertical position of the center of gravity of the body with respect to the track is 

2 mi

zr = (quite high) and the lateral displacement is 0.1 mi

yr = − (much more that lateral wheel-

track clearance), and the relative rotations are 6 degrees ( 0.1 radi i i  = − = = , very large rel-

ative rotations in railway dynamics). In this case, the velocity transformation matrices yield: 

 

 

3 3

3 3
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It is now apparent that one can neglect the influence of the track geometry on the velocity trans-

formation matrices  and j j
H G . The benefits of this simplification will be very large in terms of 

computational efficiency. 

It can be demonstrated that using both, the small angles assumption and neglecting the influence 

of the track geometry in the velocity transformation matrices, the mass matrix of the chains of 

bodies i becomes constant. 

2.5 Linearized suspension forces 

Linearization of the suspension forces, this is, getting the suspension forces simply as 
s s− −C q K q& , even in the case that the suspension elements show linear constitutive laws, is not a 

simple task. Consider the example shown in Fig. 3, where the suspension is considered as linear 

springs acting in the horizonal plane. 

 
 

 
 

 

Figure 3. Bodies connected with suspension elements. Top: reference position in tangent track. 

Middle:deformed position in tangent track. Bottom: reference position in circular track 



Assume that the linearized spring force is obtained as follows: 

( )= − −lin
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Q q
K

q
     (11) 

where K is the constant stiffness matrix that is obtained as the partial derivative of the nonlinear 

suspension force Qsusp calculated at a reference value of the coordinates qref = 0, for which the 

springs are undeformed. The resulting linearized forces lin

suspQ may provide an accurate value in 

the deformed position shown in the middle of Fig. 3. However, the linearized forces lin

suspQ are zero 

in the case shown in the bottom of Fig. 3, where it occurs that qref = 0, but the spring forces are 

clearly non zero. This example shows that the simple linearization shown in Eq. (11) does not 

work. The stiffness matrix clearly depends on the track geometry. A constant geometry-

independent stiffness matrix cannot be used for an arbitrary track when using track-relative 

coordinates.  

In the general case in which the suspension elements include spring and dashpots, it can be 

demonstrated that, for a track with arbitrary geometry, the following approximate linearized ex-

pression of the generalized forces: 

, , ,( ) ( )− = − − − − − −& &approx lin track ti tj ti tj track ti tj

susp susp ref refQ Q K q q Cq K q q C q ,  (12) 

produces accurate results. In this equation 
,ti tj

q is the set of relative coordinates of track frame tj 

with respect to track frame ti. and Ktrack and Ctrack are constant stiffness and damping matrices 

associated with the track geometry. 

2.5 Knife-edge equivalent contact constraint equations 

Wheel-rail contact is the most prominent feature of railway multibody formulation and critical 

for the dynamic analysis of the vehicle-track. Contact constraint methods use kinematic con-

straints to reduce the number of degrees of freedom of the wheel-rail system by accounting for 

the contact conditions. 

If the wheel and rail profiles are non-conformal surfaces, the contact constraint for each wheel-

rail contact pair is a set of algebraic equations that guarantee that the wheel contact point is located 

at the same position than the rail contact point and that the tangent plane to the wheel at the contact 

point is tangent to the tangent plane to the rail at the contact point, as follows: 
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where sw and sr are the two sets of two surface parameters needed to locate the contact point at 

the surface of the wheel and the rail, respectively, as shown in Fig. 4, 1

w

Ct and 2

w

Ct are two tangent 

vectors to the surface of the wheel at the contact point and
r

Cn is the normal vector to the surface 

of the rail at the contact point. L and R stand for left and right wheel-rail contact, respectively. 

Each set of equations of Eq. (13) adds 4 coordinates to the system (4 surface parameters). There-

fore, because the number of constraint equations is 5, each contact eliminates 1 degree of freedom 

of the system. The constraints given in Eq. (13) are among the most complex constraints used in 

multibody dynamics. The calculation of the Jacobian matrix and its time derivative is very in-

volved. These equations can be simplified assuming that the contact points are in a vertical plane 

that contains the axle of the wheelset. This approximation, that is very reasonable in most appli-

cations, reduces the constraints to: 



 

Figure 4. Wheel-rail contact and surface parameters. 
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where the position vectors are given in the <YI, ZI > plane (wheelset intermediate frame, a frame 

that moves with the wheelset but does not show rolling rotation). In Eq. (14) the surface-to-surface 

contact problem is reduced to a curve-to-curve contact problem. Therefore, the 2 surface param-

eters for each surface are reduced to 1 curve parameter needed to locate the contact point in the 

curves. Equation (14) can be solved in a pre-processing stage and the results can be stored in 

contact lookup tables [18]. This method results in very efficient simulations of railway dynamics. 

The KEC-method is based on finding an equivalent profile for the wheel that contacts a rail that 

is infinitely narrow, such that the subspace of the allowable motion of the wheelset coincides with 

that of the wheelset and rails with the real profiles. This is shown in Fig. 5. 

             

Figure 5. Wheelset in contact with rails. Left: real wheel and rail profiles.  

Right: equivalent profile on knife-edge rail. 

It can be shown [20] that the equivalent profiles exist, and they are very easy to calculate. When 

using equivalent profiles, constraint equations are almost linear. These equations are: 
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where f lk = f lk(s lk) and f rk = f rk(s rk) are the left and right equivalent profiles, that are functions 

of a curve parameter, ylir, zlir, yrir and zrir are the lateral and vertical, left and right track 

irregularities. 

Table 1 shows the simplification of the constraint equations when using Eq. (13) (exact con-

straints), Eq. (14) (approximate constraints) and Eq. (15) (KEC). The use of KEC results in rail-

way simulations that are more efficient than the simulations based on lookup tables. Besides, the 



use of KEC is the only constraint-based contact approach that can be used to simulate tread and 

flange contact points simultaneously and wheelset-climbing derailment [21]. 

Table 1. Simplification of wheel-rail constraint equations. 

Constraints Frame Number of C Number of s 

Exact Global 10 8 

Approximate Track 6 4 

KEC Track 4 2 

 

2.6 Moving modes method for modeling track flexibility 

The track is a deformable structure with very specific features: 

1. It is nearly infinitely long. 

2. It can be considered as a space-periodic structure. 

3. Deformation is localized in the wheel-rail contact zone. 

These features make it very difficult to model the track flexibility using common methods in 

flexible multibody dynamics for the simulation of small deformations, this is, the floating frame 

of reference approach (FFR). The moving modes method (MMM) approach is a computational 

technique developed by the author’s team [7, 13-15,17] with the following properties: 

1. Shape functions used for the description of deformation are defined in the track frame. 

See Fig. 6. 

2. It is an arbitrary Lagrangian-Eulerian (ALE) method in which the finite element mesh 

is neither fixed to material points nor fixed to geometric points.  

 

Figure 6. Modeling track flexibility. Left: floating frame of reference approach.  

Right: moving modes method approach. 

When using Krylov-subspace model order reduction to find the moving modes [13-14], the 

Lanczos process guarantee that the single-input single-output frequency response function (siso-

FRF) of the reduced order model coincides with that of the full order model to the desired degree 

of accuracy in the desired frequency range. Thus, the MMM allows the accurate simulation of 

nearly infinite tracks using a few elastic coordinates. Figure 7 shows 5 Krylov-subspace moving 

modes obtained with the FEM method. 

 

Figure 7. Krylov-subspace moving modes.  



 

3 INDUSTRIAL APPLICATIONS 

Railway industrial applications at the University of Seville [24-35] have been developed using a 

90 m scale track installed at the roof of the School of Engineering and a set of scaled vehicles (see 

Fig. 8). Some of the developments mentioned in this section have been tested in real scale line 

vehicles in the Spanish railway system. 

        

Figure 8. Experimental facilities. Left: scaled track. Right: scaled rail vehicle.  

All industrial applications described here are intermediate steps in the development of a long-

term project: the state observation of the vehicle-track systems, as sketched in Fig. 9. The state 

observation will be achieved with the help a multibody model of the vehicle-track system that 

runs on an onboard computer. At least two sensor systems, one to measure the track geometry 

and another that measures the vehicle dynamic response, will be used to find the inputs for the 

state observation algorithm. The state observation will be dual: observation of coordinates and 

velocities and parameter identification. The output of the observation algorithm will be: 

1. The dynamics of the vehicle-track system. This output will be very useful for safety and 

comfort applications. 

2. The system parameters. This output will be useful for the model-base condition moni-

toring of the vehicle track system and for the development of intelligent predictive ve-

hicle and track maintenance system. 

 
Figure 9. State observation of the dynamics of the vehicle-track system.  

This is what nowadays is called a Digital Twin of the vehicle track system 

3.1 Track geometry measuring system 

The track geometry measuring system (TGMS) [29] is a low cost, accurate mechatronic system 

that can be installed on line vehicles to measure the track irregularities. It includes inertial sensors 

and computer vision. The railhead profile is illuminated with a laser projector while a video 



camera records the projected line. The system includes a 3D accelerometer and a 3D gyroscope 

in an inertial measuring unit (IMU).  

 

Figure 10. Track geometry measuring system.  

As described in [29], the profile recorded in the video is a moving curve. Motion of the curve 

within the frame is due to two factors: (1) that the profile is recorded from a vehicle that has a 

relative motion with respect to the track, and (2) that the track geometry is irregular. Computer 

vision and multibody kinematics is used in to develop a numerical algorithm that is able to find 

the track irregularities and the vehicle dynamics using the recorded video and the measures of the 

inertial sensors. As shown in Fig. 11, important steps are the calculation of the position and ori-

entation of the railhead frame with respect to the TGMS frame (left of the figure) for each video 

frame, and the kinematic model that allows the calculation of the track irregularity ( ,lir rirr r
r r

) and 

the vehicle dynamics (
tgmsr

r
). This algorithm has been protected in a national patent. 

                

Figure 11. Track geometry measuring system. Left: calculation of position and orientation of railhead 

frame. Right: kinematics of the TGMS-irregular track system. 

3.2 Inertial navigation of rail vehicles 

Inertial navigation system (INS) is a very well-developed technology for aerial vehicles. The 

development on INS technology was boosted in the 60’s of the last century with the use of Kalman 

filter in the Apollo project. In fact, INS was the first application for a technique, the Kalman filter, 

that some authors have described as the most important scientific advance in the XX century. The 

application of INS to track vehicles is a fundamental step of geometry measurement. The TGMS 

described in the previous sub-section requires this technology to fine the sensor’s absolute 

position and orientation.  



The INS of a rail vehicle is much simpler than that of an aerial vehicle. The reason is that the 

vehicle follows a trajectory that is very similar to the design geometry of the track centerline. On 

the other hand, for track geometry measurement, the accuracy requirement of the INS system is 

millimetric, what is much more than the accuracy needed in aeronautical applications. These facts 

show that new, specially adapted INS algorithms that are based on the vehicle-track relative 

kinematics must be developed [36].  

The model and measurement equations of an extended Kalman filter (EKF) that can be used to 

find the absolute orientation of the TGMS are given by: 
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The model and measurement equations of an EKF that can be used to find the TGMS-track 

relative position is given by: 
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These are very simple, almost linear Kalman filters, that can be used to find the position and 

orientation of any rail vehicle body, like the TGMS. The key to the success of these equations is 

a good estimation of the covariance matrices of the assumed Gaussian-noise of the system model 

and the measurements model. In [36] a constrained maximum likelihood estimation was used with 

excellent results in geometry measurement. 

The INS for rail vehicles is very important in the industry. The trolleys that are used in the industry 

to measure the track geometry require the use of a total station (TS) for the calculation of the 

trolley trajectory. The TS must be in a fixed position at the side of the track. Therefore, this device 

must be moved every few tenths of meters, what makes the geometry measurement very slow. 

The reader can easily understand the important advantage of getting rid of the TS. 

3.3 Geometry measurement with only inertial sensors 

The use of video cameras in the TGMS can be problematic. Video cameras are more expensive 

than inertial sensors and they must be used in a very dirty environment. Besides, the computer 

vision algorithms are complicated and consume a lot of computational time. It would be very 

convenient to develop a measuring system that uses only inertial sensors [30, 31].  



 

Figure 12. Plan view of simplified vehicle model. 

The algorithm that finds the track geometry using inertial sensors only is also based on a Kalman 

filter. However, in this case, the system model, instead of being a simple kinematic model, like in 

Eqs. (16)-(17), is a dynamic model based on the linear weakly coupled dynamic model described 

in Sub-section 2.1. The model that is used for the measurement of the alignment uses as model 

equation the simplified system shown in Fig. 12. The estate vector and measurements vector are 

given by:  
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where the selected coordinates can be observed in Fig. 12 and ξ is the alignment irregularity. The 

measurement vector z includes two accelerations and an angular rate given by two accelerometers 

and one gyroscope, respectively, and a “virtual sensor” of the alignment ξmeas that is always zero. 

This virtual sensor is successfully used to eliminate the drift in the measured irregularity. 

The results of this method are almost as good as the results of the TGMS explained in Sub-section 

2.1. However, the main drawback of this method is that it requires the identification of a large set 

of model parameters. Besides, some parameters are difficult to identify experimentally, like 

Kalker’s linear creep coefficients. The TGMS system model, being kinematic, require only 

geometric parameters that are easy to identify. In our work, for the dynamic model, the Temporal 

Structural Model Updating Method [30] was successfully used. 

3.4 Measurement of wheel-rail contact forces with strain gauges 

The measurement of wheel-rail contact forces is very important in the industry. Safety criteria are 

a based on the values of the vertical and lateral wheel-rail contact forces. Contact forces are the 

most important factors that affect the wear of the wheel and rail profiles. Therefore, the 

measurement of the wheel-rail contact forces is also very important for vehicle and track 

maintenance. Nowadays it is very common that rail administrations ask for dynamometric wheels 

for the measurement of contact forces. 



      

Figure 13. Extensometric dynamometric wheel. 

The most common method used in the industry to measure the wheel-rail contact forces is the use 

of wheels instrumented with strain gauges. Strain gauges can be fixed to the wheel web or to the 

wheelset axle. There are three difficulties with this method: 

1. It requires an expensive telemetry system because the gauges are installed in a rotating 

part. 

2. Strains gauges must be very sensitive. 

3. The position of the gauges has to be set with high accuracy. 

Figure 13 shows on the left shows the scaled dynamometric wheelset with strain gauges. The 

reader may get an idea of the complicated electronics used. For the calculation of the contact 

forces, the harmonic elimination technique developed by Gutiérrez-López et al [26] was used. 

However, in [27], an alternative procedure based on artificial neural networks, much more effi-

cieny and equally accurate was developed. 

3.5. Measurement of wheel-rail contact forces with distance lasers 

An alternative method to measure wheel-rail contact force is based on the use of high precision 

distance lasers to measure the wheel deformation [26]. The most important benefit of this tech-

nique when compared with the extensometry technique is that the sensors are installed in a non-

rotating part. Thus, the telemetry system is not needed. 

      

Figure 14. Dynamometric wheel with distance lasers. 

Figure 14 on the left shows the test bench where both, the extensometry and the distance laser 

methods, where calibrated. As it can be observed more clearly in the central drawing, three lasers 

were used. The drawing of the right shows the simple flexible model that was used to find the 

lateral contact force Q as a function of the three measurements. The results of this research [26] 

pointed out that the extensometry technique is more accurate than the distance lasers technique, 

as it can be observed in Fig. 15. 

 



 

Figure 15. Comparison of measured and simulated lateral wheel-rail contact forces. 

3.6 Measurement of corrugation 

Corrugation is a short wave-length irregularity (between 10 and 1000 mm) that appear in railway 

tracks. It is very common in curved segement of metropolitan trains and it is a challenging 

maintenance problem.  

 

Figure 16. Corrugation in the scale track. 

Our group is developing a method to detect corrugation using axle-box accelerometers (ABA). 

To that end, corrugated track segments have been installed in the scale track, as can be observed 

in Fig. 16. The corrugation has been machined in the railhead following an analytical profile. That 

way, a full control of the geometry to be detected is achieved.  

 

Figure 17. Time-frequency analysis of ABA using WSST. 

Different signal processing techniques of the measured corrugation-induced acceleration, like 

wavelet synchorosqueezed transform (WSST) shown in Fig. 17, has been successfully used to 

detect the corrugation wavelengths where they appear. However, the calcuation of a transfer 

function that can provide an accurate value of the amplitude of the corrugation our of the 

acceleration signal is still a work in progress. 

4. SUMMARY AND CONCLUSIONS 

The railroad dynamics research group at the University of Seville has developed a set of 

development in the modeling and computer simulation of rail vehicles. One of the main objective 

of these developments is to find simple and accurate models that can describe the vehicle and 

track dynamics. These developments have been done in the context of multibody dynamics. 



However, the purpose of this research is beyond the computer simulation. The models are 

developed to be run on onboard computers to do the state observation of the vehicle-track system, 

thus finding the coordinates and velocities of the system (ride quality) and the system parameters 

(predictive maintenance).  
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